A pathway to improve seaweed aquaculture through microbiota manipulation

A pathway to improve seaweed aquaculture through microbiota manipulation

Source Node: 1895756
    • Teagle H.
    • et al.

    The role of kelp species as biogenic habitat formers in coastal marine ecosystems.

    J. Exp. Mar. Biol. Ecol. 2017; 492: 81-98

    • Duarte C.M.
    • et al.

    A seaweed aquaculture imperative to meet global sustainability targets.

    Nat. Sustain. 2022; 5: 185-193

    • Lomartire S.
    • Goncalves A.M.M.

    An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications.

    Mar. Drugs. 2022; 20: 141

    • Food and Agriculture Organization

    Yearbook of Fishery and Aquaculture Statistics 2019.

    FAO, 2021

    • Buschmann A.H.
    • et al.

    Seaweed production: overview of the global state of exploitation, farming and emerging research activity.

    Eur. J. Phycol. 2017; 52: 391-406

    • Hu Z.
    • et al.

    Kelp aquaculture in China: a retrospective and future prospects.

    Rev. Aquac. 2021; 13: 1324-1351

    • Charrier B.
    • et al.

    Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture.

    New Phytol. 2017; 216: 967-975

    • Loureiro R.
    • et al.

    Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace.

    New Phytol. 2015; 206: 489-492

    • Filote C.
    • et al.

    Biorefinery of marine macroalgae into high-tech bioproducts: a review.

    Environ. Chem. Lett. 2021; 19: 969-1000

    • Sudhakar K.
    • et al.

    An overview of marine macroalgae as bioresource.

    Renew. Sust. Energ. Rev. 2018; 91: 165-179

    • Hollarsmith J.A.
    • et al.

    Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations.

    J. Exp. Mar. Biol. Ecol. 2020; 522151247

    • Qiu Z.
    • et al.

    Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp.

    Proc. R. Soc. B Biol. Sci. 2019; 28620181887

    • Nepper-Davidsen J.
    • et al.

    Exposure to simulated heatwave scenarios causes long-term reductions in performance in Saccharina latissima.

    Mar. Ecol. Prog. Ser. 2019; 630: 25-39

    • Campbell A.H.
    • et al.

    Climate change and disease: bleaching of a chemically defended seaweed.

    Glob. Change Biol. 2011; 17: 2958-2970

    • Behera D.P.
    • et al.

    Epiphytism, diseases and grazing in seaweed aquaculture: a comprehensive review.

    Rev. Aquac. 2022; 14: 1345-1370

    • Smale D.A.

    Impacts of ocean warming on kelp forest ecosystems.

    New Phytol. 2020; 225: 1447-1454

    • Filbee-Dexter K.
    • Wernberg T.

    Rise of turfs: a new battlefront for globally declining kelp forests.

    BioScience. 2018; 68: 64-76

    • Dittami S.M.
    • et al.

    A community perspective on the concept of marine holobionts: current status, challenges, and future directions.

    PeerJ. 2021; 9e10911

    • Egan S.
    • et al.

    The seaweed holobiont: understanding seaweed–bacteria interactions.

    FEMS Microbiol. Rev. 2013; 37: 462-476

    • Egan S.
    • Gardiner M.

    Microbial dysbiosis: rethinking disease in marine ecosystems.

    Front. Microbiol. 2016; 7: 991

    • Cunningham M.
    • et al.

    Shaping the future of probiotics and prebiotics.

    Trends Microbiol. 2021; 29: 667-685

    • Arif I.
    • et al.

    Plant microbiome engineering: expected benefits for improved crop growth and resilience.

    Trends Biotechnol. 2020; 38: 1385-1396

    • Herrmann M.N.
    • et al.

    A global network meta-analysis of the promotion of crop growth, yield, and quality by bioeffectors.

    Front. Plant Sci. 2022; 13816438

    • Schütz L.
    • et al.

    Improving crop yield and nutrient use efficiency via biofertilization – a global meta-analysis.

    Front. Plant Sci. 2018; 8: 2204

    • Marín O.
    • et al.

    From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities.

    Front. Plant Sci. 2021; 12650609

    • Qiu Z.
    • et al.

    New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering.

    Biotechnol. Adv. 2019; 37107371

    • Burgunter-Delamare B.
    • et al.

    Metabolic complementarity between a brown alga and associated cultivable bacteria provide indications of beneficial interactions.

    Front. Mar. Sci. 2020; ()

    • Alsufyani T.
    • et al.

    Macroalgal-bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta).

    J. Exp. Bot. 2020; 71: 3340-3349

    • Tapia J.E.
    • et al.

    Microbiota influences morphology and reproduction of the brown alga Ectocarpus sp.

    Front. Microbiol. 2016; 7: 197

    • Batista B.D.
    • et al.

    The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom).

    Arch. Microbiol. 2021; 203: 3869-3882

    • Ghaderiardakani F.
    • et al.

    Analysis of algal growth- and morphogenesis-promoting factors in an integrated multi-trophic aquaculture system for farming Ulva spp.

    Aquac. Environ. Interact. 2019; 11: 375-391

    • Tang M.
    • et al.

    Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil.

    Microbiol. Res. 2019; 221: 50-59

    • Wichard T.

    From model organism to application: bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture.

    Semin. Cell Dev. Biol. 2022; ()

    • Steinhagen S.
    • et al.

    Conspecificity of the model organism Ulva mutabilis and Ulva compressa (Ulvophyceae, Chlorophyta).

    J. Phycol. 2019; 55: 25-36

    • Polikovsky M.
    • et al.

    Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): significant for the feedstock of bioethanol production.

    Algal Res. 2020; 49101945

    • Fukui Y.
    • et al.

    Isolation of Hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis.

    Microb. Ecol. 2014; 68: 556-566

    • Weinberger F.
    • et al.

    Spore release in Acrochaetium sp. (Rhodophyta) is bacterially controlled.

    J. Phycol. 2007; 43: 235-241

    • Singh R.P.
    • Reddy C.R.K.

    Seaweed-microbial interactions: key functions of seaweed-associated bacteria.

    FEMS Microbiol. Ecol. 2014; 88: 213-230

    • Tan C.
    • et al.

    Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview.

    J. Appl. Phycol. 2021; 33: 2995-3023

    • Tarakhovskaya E.R.
    • et al.

    Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae).

    Russ. J. Plant Physiol. 2013; 60: 176-183

    • Singh R.P.
    • et al.

    Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura.

    FEMS Microbiol. Ecol. 2011; 76: 381-392

    • Florez J.Z.
    • et al.

    A mesocosm study on bacteria-kelp interactions: Importance of nitrogen availability and kelp genetics.

    J. Phycol. 2021; 57: 1777-1791

    • Chisholm J.R.M.
    • et al.

    ‘Roots’ in mixotrophic algae.

    Nature. 1996; 381: 382

    • Bonthond G.
    • et al.

    How do microbiota associated with an invasive seaweed vary across scales?.

    Mol. Ecol. 2020; 29: 2094-2108

    • Head W.D.
    • Carpenter E.J.

    Nitrogen fixation associated with the marine macroalga Codium fragile.

    Limnol. Oceanogr. 1975; 20: 815-823

    • Bonthond G.
    • et al.

    Draft genome and description of Waterburya agarophytonicola gen. nov. sp. nov. (Pleurocapsales, Cyanobacteria): a seaweed symbiont.

    Antonie Van Leeuwenhoek. 2021; 114: 2189-2203

    • Dogs M.
    • et al.

    Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle.

    Syst. Appl. Microbiol. 2017; 40: 370-382

    • Cooper M.B.
    • et al.

    Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae.

    ISME J. 2019; 13: 334-345

    • Ward G.M.
    • et al.

    Ice-Ice disease: an environmentally and microbiologically driven syndrome in tropical seaweed aquaculture.

    Rev. Aquac. 2022; 14: 414-439

    • Faisan J.P.
    • et al.

    Preliminary survey of pests and diseases of eucheumatoid seaweed farms in the Philippines.

    J. Appl. Phycol. 2021; 33: 2391-2405

    • Weinberger F.

    Pathogen-induced defense and innate immunity in macroalgae.

    Biol. Bull. 2007; 213: 290-302

    • Li J.
    • et al.

    Bacterial controlled mitigation of dysbiosis in a seaweed disease.

    ISME J. 2022; 16: 378-387

    • Li J.
    • et al.

    Cross-host protection of marine bacteria against macroalgal disease.

    Microb. Ecol. 2021; ()

    • Saha M.
    • Weinberger F.

    Microbial “gardening” by a seaweed holobiont: Surface metabolites attract protective and deter pathogenic epibacterial settlement.

    J. Ecol. 2019; 107: 2255-2265

    • Harder T.
    • et al.

    Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra.

    J. Chem. Ecol. 2012; 38: 442-450

    • Case R.J.
    • et al.

    Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga.

    Environ. Microbiol. 2011; 13: 529-537

    • Campbell A.H.
    • et al.

    Demographic consequences of disease in a habitat-forming seaweed and impacts on interactions between natural enemies.

    Ecology. 2014; 95: 142-152

    • Kumar V.
    • et al.

    Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra.

    Environ. Microbiol. 2016; 18: 3962-3975

    • Fernandes N.
    • et al.

    Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra.

    PLoS One. 2011; 6e27387

    • Zozaya-Valdés E.
    • et al.

    Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra.

    Environ. Microbiol. 2017; 19: 3012-3024

    • Zozaya-Valdes E.
    • et al.

    A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens.

    Front. Microbiol. 2015; 6: 146

    • Fernandes N.
    • et al.

    Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra.

    PLoS One. 2012; 7e50854

    • Longford S.R.
    • et al.

    Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont.

    Sci. Rep. 2019; 9: 1363

    • Vallet M.
    • et al.

    Chemically-mediated interactions between macroalgae, their fungal endophytes, and Protistan pathogens.

    Front. Microbiol. 2018; 9: 03161

    • Rao D.
    • et al.

    Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata.

    Appl. Environ. Microbiol. 2005; 71: 1729-1736

    • Egan S.
    • et al.

    Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca.

    Environ. Microbiol. 2000; 2: 343-347

    • Gu S.
    • et al.

    Competition for iron drives phytopathogen control by natural rhizosphere microbiomes.

    Nat. Microbiol. 2020; 5: 1002-1010

    • Fan X.
    • et al.

    Potential of a quorum quenching bacteria isolate Ochrobactrum intermedium D-2 against soft rot pathogen Pectobacterium carotovorum subsp. carotovorum.

    Front. Microbiol. 2020; 11: 898

    • Wang G.
    • et al.

    Can targeted defense elicitation improve seaweed aquaculture?.

    J. Appl. Phycol. 2019; 31: 1845-1854

    • Tzipilevich E.
    • et al.

    Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria.

    Cell Host Microbe. 2021; 29: 1507-1520

  • Origin and evolution of the plant immune system.

    New Phytol. 2019; 222: 70-83

    • Li M.
    • et al.

    Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition.

    ISME J. 2022; 16: 868-875

    • Li Z.
    • et al.

    A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance.

    Microbiome. 2021; 9: 217

    • Kessler R.W.
    • et al.

    Macroalgal–bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta).

    Mol. Ecol. 2018; 27: 1808-1819

    • Li H.
    • et al.

    Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress.

    ISME J. 2021; 15: 2865-2882

    • Rolfe S.A.
    • et al.

    Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes.

    Curr. Opin. Microbiol. 2019; 49: 73-82

    • Saha M.
    • et al.

    Chemically mediated microbial “gardening” capacity of a seaweed holobiont is dynamic.

    Microorganisms. 2020; 8: 1893

    • KleinJan H.
    • et al.

    Exploring the cultivable Ectocarpus microbiome.

    Front. Microbiol. 2017; 8: 2456

    • Karimi E.
    • et al.

    Genome sequences of 72 bacterial strains isolated from Ectocarpus subulatus: a resource for algal microbiology.

    Genome Biol. Evol. 2020; 12: 3647-3655

  • Bacterial responses to osmotic challenges.

    J. Gen. Physiol. 2015; 145: 381-388

    • Ganesan M.
    • et al.

    Seaweed resources in India – current status of diversity and cultivation: prospects and challenges.

    Bot. Mar. 2019; 62: 463-482

    • Gupta V.
    • et al.

    Marine macroalgal nursery: a model for sustainable production of seedlings for large scale farming.

    Algal Res. 2018; 31: 463-468

    • Amaya-Gómez Carol V.
    • et al.

    A framework for the selection of plant growth-promoting rhizobacteria based on bacterial competence mechanisms.

    Appl. Environ. Microbiol. 2020; 86e00760–00720

    • Nappi J.
    • et al.

    Differential priority effects impact taxonomy and functionality of host-associated microbiomes.

    Mol. Ecol. 2022; ()

    • Califano G.
    • et al.

    Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta).

    Front. Mar. Sci. 2020; 7: 52

    • Peteiro C.
    • et al.

    Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlantic coast of Southern Europe: an overview.

    Algal Res. 2016; 15: 9-23

    • Ke J.
    • et al.

    Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture.

    Trends Biotechnol. 2021; 39: 244-261

    • Goicoechea N.
    • Antolín M.C.

    Increased nutritional value in food crops.

    Microb. Biotechnol. 2017; 10: 1004-1007

  • Time Stamp:

    More from Biotechnology Trends