Tuberkulózis fototermikus terápiája előre aktivált makrofág membránnal bevont nanorészecskék célzásával - Nature Nanotechnology

Tuberkulózis fototermikus terápiája előre aktivált makrofág membránnal bevont nanorészecskék célzásával – Nature Nanotechnology

Forrás csomópont: 2489764
  • Global Tuberculosis Report 2022 (Egészségügyi Világszervezet, 2022).

  • Kislitsyna, N. A. Comparative evaluation of rifampicin and isoniazid penetration into the pathological foci of the lungs in tuberculosis patients. Probl. Tuberk. 4, 55 – 57 (1985).

    Google Scholar 

  • Khan, A. et al. Genetic variants and drug efficacy in tuberculosis: a step toward personalized therapy. Glob. Med. Genet. 9, 90 – 96 (2022).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Tostmann, A. et al. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol. 23, 192 – 202 (2008).

    Cikk  CAS  PubMed  Google Scholar 

  • Mane, S. R. et al. Increased bioavailability of rifampicin from stimuli-responsive smart nano carrier. ACS Appl. Mater. Interfészek 6, 16895 – 16902 (2014).

    Cikk  CAS  PubMed  Google Scholar 

  • Mei, Q. et al. Formulation and in vitro characterization of rifampicin-loaded porous poly (ε-caprolactone) microspheres for sustained skeletal delivery. Drug Des. Devel. Ott. 12, 1533 – 1544 (2018).

    Cikk  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu, P. et al. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to osteoarticular tuberculosis. Gyógyszer szállítás. Ford. Res. 11, 1509 – 1519 (2021).

    Cikk  CAS  PubMed  Google Scholar 

  • Fenaroli, F. et al. A nanorészecskék fokozott permeabilitása és retenciószerű extravazációja az érrendszerből a tuberkulózis granulomákba zebrahal és egér modellekben. ACS Nano 12, 8646 – 8661 (2018).

    Cikk  CAS  PubMed  Google Scholar 

  • Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Sejtmembrán bevonat nanotechnológia. Adv. Mater. 30, e1706759 (2018).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Engering, A. J. et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417 – 2425 (1997).

    Cikk  CAS  PubMed  Google Scholar 

  • Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Tudomány 288, 2051 – 2054 (2000).

    Cikk  CAS  PubMed  ADS  Google Scholar 

  • Rodriguez, PL et al. Minimális „saját” peptidek, amelyek gátolják a fagocita kiürülést és fokozzák a nanorészecskék szállítását. Tudomány 339, 971 – 975 (2013).

    Cikk  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Tudomány 310, 1135 – 1138 (2005).

    Cikk  CAS  PubMed  ADS  Google Scholar 

  • Jafari, A., Nagheli, A., Foumani, A. A., Soltani, B. & Goswami, R. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med. J. 35, e194 (2020).

    Cikk  CAS  PubMed  PubMed Central  Google Scholar 

  • Maphasa, R. E., Meyer, M. & Dube, A. The macrophage response to Mycobacterium tuberculosis and opportunities for autophagy inducing nanomedicines for tuberculosis therapy. Elülső. Sejt. Megfertőzni. Microbiol. 10, 618414 (2020).

    Cikk  CAS  PubMed  Google Scholar 

  • Shi, L., Jiang, Q., Bushkin, Y., Subbian, S. & Tyagi, S. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis fertőzés. mBio 10, e02550–18 (2019).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Fabriek, B. O. et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Vér 113, 887 – 892 (2009).

    Cikk  CAS  PubMed  Google Scholar 

  • Matsubara, V. H. et al. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and lipopolysaccharide. Elülső. Microbiol. 8, 2280 (2017).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Nicolaou, G., Goodall, A. H. & Erridge, C. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J. Atheroscler. Thromb. 19, 137 – 148 (2012).

    Cikk  CAS  PubMed  Google Scholar 

  • Bin, L. et al. Antiviral and anti-inflammatory treatment with multifunctional alveolar macrophage-like nanoparticles in a surrogate mouse model of COVID-19. Adv. Sci. (Weinh.) 8, 2003556 (2021).

    Google Scholar 

  • Wu, H. H., Zhou, Y., Tabata, Y. & Gao, J. Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J. Control. Kiadás 294, 102 – 113 (2019).

    Cikk  CAS  PubMed  Google Scholar 

  • Carlsson, F. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS kórokozó. 6, e1000895 (2010).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Takaki, K., Davis, J. M., Winglee, K. & Ramakrishnan, L. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat. Protoc. 8, 1114 – 1124 (2013).

    Cikk  PubMed  PubMed Central  Google Scholar 

  • Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunitás 34, 637 – 650 (2011).

    Cikk  CAS  PubMed  Google Scholar 

  • Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901 – 944 (2005).

    Cikk  CAS  PubMed  Google Scholar 

  • Wang, M. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funkció. Mater. 32, 2205371 (2022).

    Cikk  CAS  Google Scholar 

  • Tang, M. et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano 13, 10405 – 10418 (2019).

    Cikk  CAS  PubMed  Google Scholar 

  • Xu, C., Jiang, Y., Han, Y., Pu, K. & Zhang, R. A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33, e2008061 (2021).

    Cikk  PubMed  Google Scholar 

  • Goñi, F. M. The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim. Biophys. Acta Biomembr. 1838, 1467 – 1476 (2022).

    Cikk  Google Scholar 

  • Ramasamy, M., Lee, S. S., Yi, D. K. & Kim, K. Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria. J. Mater. Chem. B 2, 981 – 988 (2014).

    Cikk  CAS  PubMed  Google Scholar 

  • Yang, Y. et al. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem. Int. Szerk. 56, 16239 – 16242 (2017).

    Cikk  CAS  Google Scholar 

  • Zhang, J. et al. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. J. Hazard. Mater. 342, 121 – 130 (2018).

    Cikk  CAS  PubMed  Google Scholar 

  • Hessel, C. M. et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560 – 2566 (2011).

    Cikk  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li, Y. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11, 2621 – 2626 (2020).

    Cikk  Google Scholar 

  • Wang, J. et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics. Adv. Mater. 34, e2106082 (2022).

    Cikk  PubMed  Google Scholar 

  • Liu, S. et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer. ACS Nano 14, 14228 – 14239 (2020).

    Cikk  CAS  PubMed  Google Scholar 

  • Liu, Y. et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Szerk. 58, 2407 – 2412 (2019).

    Cikk  CAS  ADS  Google Scholar 

  • Miao, W. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funkció. Mater. 32, 2203571 (2022).

    Google Scholar 

  • Yamamoto, T., Takiwaki, H., Arase, S. & Ohshima, H. Derivation and clinical application of special imaging by means of digital cameras and ImageJ freeware for quantification of erythema and pigmentation. Skin Res. Technol. 14, 26 – 34 (2008).

  • Mitteer, D. R., Greer, B. D., Fisher, W. W. & Cohrs, V. L. Teaching behavior technicians to create publication-quality, single-case design graphs in GraphPad prism 7. J. Appi. Behav. Anális. 51, 998 – 1010 (2018).

  • Időbélyeg:

    Még több Természet Nanotechnológia