버클리 연구소 및 FSU 팀, 원자 수준에서 차세대 배터리 설계

버클리 연구소 및 FSU 팀, 원자 수준에서 차세대 배터리 설계

소스 노드 : 1975936

A team from Lawrence Berkeley National Laboratory (Berkeley Lab) and 플로리다 주립 대학 has designed a new blueprint for solid-state batteries that are less dependent on specific chemical elements, particularly critical metals that are challenging to source due to supply chain issues. Their work, reported recently in the journal 과학, could advance solid-state batteries that are efficient and affordable.

Touted for their high energy density and superior safety, solid-state batteries could be a game-changer for the electric car industry. But developing one that is affordable and also conductive enough to power a car for hundreds of miles on a single charge has long been a challenging hurdle to overcome.

“With our new approach to solid-state batteries, you don’t have to give up affordability for performance.” — Yan Zeng, Berkeley Lab staff scientist, Materials Sciences Division

<img aria-describedby="caption-attachment-288350" data-attachment-id="288350" data-permalink="https://cleantechnica.com/2023/02/24/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level/portait-yan-zeng-1200×1200-1-e1677016002624-628×704/" data-orig-file="https://cleantechnica.com/files/2023/02/Portait-Yan-Zeng-1200×1200-1-e1677016002624-628×704-1.jpg" data-orig-size="628,704" data-comments-opened="1" data-image-meta="{"aperture":"0","credit":"","camera":"","caption":"","created_timestamp":"0","copyright":"","focal_length":"0","iso":"0","shutter_speed":"0","title":"","orientation":"0"}" data-image-title="Portait-Yan-Zeng-1200×1200-1-e1677016002624-628×704" data-image-description data-image-caption="

Yan Zeng, Berkeley Lab staff scientist (Credit: courtesy of Yan Zeng)

” data-medium-file=”https://platoaistream.net/wp-content/uploads/2023/02/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level-1.jpg” data-large-file=”https://cleantechnica.com/files/2023/02/Portait-Yan-Zeng-1200×1200-1-e1677016002624-628×704-1.jpg” decoding=”async” loading=”lazy” class=”size-medium wp-image-288350″ src=”https://platoaistream.net/wp-content/uploads/2023/02/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level-1.jpg” alt width=”357″ height=”400″ srcset=”https://platoaistream.net/wp-content/uploads/2023/02/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level-1.jpg 357w, https://cleantechnica.com/files/2023/02/Portait-Yan-Zeng-1200×1200-1-e1677016002624-628×704-1.jpg 628w” sizes=”(max-width: 357px) 100vw, 357px”>

Yan Zeng, Berkeley Lab staff scientist (Credit: courtesy of Yan Zeng)

“Our work is the first to solve this problem by designing a solid electrolyte with not just one metal but with a team of affordable metals,” said co-first author Yan Zeng, a staff scientist in Berkeley Lab’s Materials Sciences Division.

In a lithium-ion battery, the electrolyte works like a transfer hub where lithium ions move with electric charge to either power a device or recharge the battery.

Like other batteries, solid-state batteries store energy and then release it to power devices. But rather than liquid or polymer gel electrolytes found in lithium-ion batteries, they use a solid electrolyte.

Government, research, and academia have heavily invested in the research and development of solid-state batteries because the liquid electrolytes designed for many commercial batteries are more prone to overheating, fire, and loss of charge.

However, many of the solid-state batteries constructed thus far are based on specific types of metals that are expensive and not available in large quantities. Some aren’t found at all in the United States.

For the current study, Zeng — along with Bin Ouyang, an assistant professor in chemistry and biochemistry at Florida State University — and senior author 게르브란트 시더, a Berkeley Lab faculty senior scientist and UC Berkeley professor of materials science and engineering, demonstrated a new type of solid electrolyte consisting of a mix of various metal elements. Zeng and Ouyang first developed the idea for this work while finishing their postdoctoral research at Berkeley Lab and UC Berkeley under the supervision of Ceder.

The new materials could result in a more conductive solid electrolyte that is less dependent on a large quantity of an individual element.

<img aria-describedby="caption-attachment-288348" data-attachment-id="288348" data-permalink="https://cleantechnica.com/2023/02/24/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level/2023_lithium-solid-state_gif_4/" data-orig-file="https://platoaistream.net/wp-content/uploads/2023/02/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level.gif" data-orig-size="1240,500" data-comments-opened="1" data-image-meta="{"aperture":"0","credit":"","camera":"","caption":"","created_timestamp":"0","copyright":"","focal_length":"0","iso":"0","shutter_speed":"0","title":"","orientation":"0"}" data-image-title="2023_LITHIUM-SOLID-STATE_GIF_4" data-image-description data-image-caption="

Shown left: Conventional solid “ordered” electrolyte made of just one type of metal (blue spheres). The movement of lithium ions (yellow sphere) is slow and limited, thus hampering ion conductivity and battery performance. (Gray spheres represent oxygen.) Shown right: Ions move significantly faster through “disordered” solid electrolyte: Mixing different types of metals (blue, teal, and navy spheres) creates new pathways – much like the addition of expressways on a congested highway – through which lithium ions can move quickly through the electrolyte. (Credit: Jenny Nuss/Berkeley Lab)

” data-medium-file=”https://cleantechnica.com/files/2023/02/2023_LITHIUM-SOLID-STATE_GIF_4-400×161.gif” data-large-file=”https://cleantechnica.com/files/2023/02/2023_LITHIUM-SOLID-STATE_GIF_4-800×323.gif” decoding=”async” loading=”lazy” class=”wp-image-288348 size-full” src=”https://platoaistream.net/wp-content/uploads/2023/02/berkeley-lab-fsu-team-designs-next-gen-batteries-at-atomic-level.gif” alt width=”1240″ height=”500″>

Shown left: Conventional solid “ordered” electrolyte made of just one type of metal (blue spheres). The movement of lithium ions (yellow sphere) is slow and limited, thus hampering ion conductivity and battery performance. (Gray spheres represent oxygen.) Shown right: Ions move significantly faster through “disordered” solid electrolyte: Mixing different types of metals (blue, teal, and navy spheres) creates new pathways — much like the addition of expressways on a congested highway — through which lithium ions can move quickly through the electrolyte. (Credit: Jenny Nuss/Berkeley Lab)

In experiments at Berkeley Lab and UC Berkeley, the researchers demonstrated the new solid electrolyte by synthesizing and testing several lithium-ion and sodium-ion materials with multiple mixed-metals.

They observed that the new multi-metal materials performed better than expected, displaying an ionic conductivity several orders of magnitude faster than the single-metal materials. Ionic conductivity is a measurement of how quickly lithium ions move to conduct electric charge.

The researchers theorize that mixing many different types of metals together creates new pathways — much like the addition of expressways on a congested highway — through which lithium ions can move quickly through the electrolyte. Without these pathways, the movement of lithium ions would be slow and limited when they travel through the electrolyte from one end of the battery to the other, Zeng explained.

To validate candidates for the multi-metal design, the researchers performed advanced theoretical calculations based on a method called density-functional theory on supercomputers at the 국립 에너지 연구 과학 컴퓨팅 센터 (NERSC). Using scanning transmission electron microscopes (STEM) at the 분자 주조, the researchers confirmed that each electrolyte is made of only one type of material — what scientists call a “single phase” — with unusual distortions giving rise to the new ion transport pathways in its crystal structure.

The discovery enables new opportunities to design next-generation ionic conductors. The next step in this research is to apply the new approach that Zeng has developed with Ceder at Berkeley Lab to further explore and discover novel solid electrolyte materials that can improve battery performance even further.

This work represents one of the many ways in which experts at the Berkeley Lab Energy Storage Center are working to enable the nation’s transition to a clean, affordable, and resilient energy future.

Last year, Ouyang won a NERSC High Performance Computing Achievement Award for “advancing the understanding of chemical short-range order for designing a new generation of commercialized cathode materials.” The award recognizes early-career scientists who have made significant contributions to scientific computation using NERSC resources.

Other scientists contributing to this work are Young-Woon Byeon and Zijian Cai from Berkeley Lab, Jue Liu from Oak Ridge National Laboratory, and Lincoln Miara and Yan Wang from the Samsung Advanced Institute of Technology.

The Molecular Foundry and NERSC are DOE Office of Science user facilities at Berkeley Lab.

This research was supported by the DOE Vehicle Technologies Office.

의 의례 로렌스 버클리 국립 연구소.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

 


저는 유료화를 좋아하지 않습니다. 당신은 유료화를 좋아하지 않습니다. 누가 유료화를 좋아합니까? 여기 CleanTechnica에서는 한동안 제한된 페이월을 구현했지만 항상 잘못되었다고 느꼈고 거기에 무엇을 넣어야 할지 결정하기가 항상 어려웠습니다. 이론적으로 가장 독점적이고 최고의 콘텐츠는 페이월 뒤에 있습니다. 그러나 적은 수의 사람들이 그것을 읽습니다! 우리는 페이월이 마음에 들지 않아서 페이월을 버리기로 결정했습니다. 불행하게도 미디어 사업은 여전히 ​​마진이 적은 거칠고 치열한 사업입니다. 물 위에 머무르는 것은 끝없는 올림픽 도전입니다. 헐떡 거림 - 자라다. 그래서 …

 


타임 스탬프 :

더보기 CleanTechnica