Advances in nanodisc platforms for membrane protein purification

Advances in nanodisc platforms for membrane protein purification

Source Node: 2016461
    • Yin H.
    • Flynn A.D.

    Drugging membrane protein interactions.

    Annu. Rev. Biomed. Eng. 2016; 18: 51-76

    • GarcĂ­a-NafrĂ­a J.
    • Tate C.G.

    Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development.

    Annu. Rev. Pharmacol. Toxicol. 2019; 60: 51-71

    • Patching S.G.

    Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery.

    Biochim. Biophys. Acta. 2014; 1838: 43-55

    • Opella S.J.
    • Marassi F.M.

    Structure determination of membrane proteins by NMR spectroscopy.

    Chem. Rev. 2004; 104: 3587-3606

    • Carpenter E.P.
    • et al.

    Overcoming the challenges of membrane protein crystallography.

    Curr. Opin. Struct. Biol. 2008; 18: 581-586

    • PrivĂ© G.G.

    Detergents for the stabilization and crystallization of membrane proteins.

    Methods. 2007; 41: 388-397

    • Bayburt T.H.
    • Sligar S.G.

    Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers.

    Prot. Sci. 2009; 12: 2476-2481

    • Leitz A.J.
    • et al.

    Functional reconstitution of β2-adrenergic receptors utilizing self-assembling nanodisc technology.

    Biotechniques. 2006; 40: 601-612

    • Denisov I.G.
    • et al.

    Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size.

    J. Am. Chem. Soc. 2004; 126: 3477-3487

    • Shaw A.W.
    • et al.

    Phospholipid phase transitions in homogeneous nanometer scale bilayer discs.

    FEBS Lett. 2004; 556: 260-264

    • Arana M.R.
    • et al.

    Functional and structural comparison of the ABC exporter MsbA studied in detergent and reconstituted in nanodiscs.

    Biochem. Biophys. Res. Commun. 2019; 512: 448-452

    • Reis R.I.
    • Moraes I.

    Probing membrane protein assembly into nanodiscs by in situ dynamic light scattering: A2a receptor as a case study.

    Biology (Basel). 2020; 9: 400

    • Bocquet N.
    • et al.

    Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.

    BBA Biomembr. 2015; 1848: 1224-1233

    • Staus D.P.
    • et al.

    Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc.

    Nature. 2020; 579: 297-302

    • Shen P.S.
    • et al.

    The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs.

    Cell. 2016; 167: 763-773

    • Winterstein L.M.
    • et al.

    Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers.

    J. Gen. Physiol. 2018; 150: 637-646

    • Autzen H.E.
    • et al.

    Structure of the human TRPM4 ion channel in a lipid nanodisc.

    Science. 2018; 359: 228-232

    • Borch J.
    • et al.

    Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.

    Anal. Chem. 2008; 80: 6245-6252

    • Boldog T.
    • et al.

    Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties.

    PNAS. 2006; 103: 11509-11514

    • Frauenfeld J.
    • et al.

    A saposin–lipoprotein nanoparticle system for membrane proteins.

    Nat. Methods. 2016; 13: 345-351

    • Flayhan A.
    • et al.

    Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research.

    Structure. 2018; 26: 345-355

    • Dörr J.M.
    • et al.

    The styrene–maleic acid copolymer: a versatile tool in membrane research.

    Eur. Biophys. J. 2016; 45: 3-21

    • Ravula T.
    • et al.

    Polymer nanodiscs: advantages and limitations.

    Chem. Phys. Lipids. 2019; 219: 45-49

    • Fiori M.C.
    • et al.

    Polymer nanodiscs: discoidal amphiphilic block copolymer membranes as a new platform for membrane proteins.

    Sci. Rep. 2017; 7: 15227

    • Smith A.A.A.
    • et al.

    Lipid nanodiscs via ordered copolymers.

    Chem. 2020; 6: 2782-2795

    • Laursen T.
    • et al.

    Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum.

    Science. 2016; 354: 890-893

    • Morrison K.A.
    • et al.

    Development of methodology to investigate the surface SMALPome of mammalian cells.

    Front. Mol. Biosci. 2021; 8780033

    • Thakur N.
    • et al.

    Production of human A2AAR in lipid nanodiscs for 19F-NMR and single-molecule fluorescence spectroscopy.

    STAR Protoc. 2022; 3101535

    • Hagn F.
    • et al.

    Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.

    Nat. Protoc. 2018; 13: 79-98

    • Lloris-Garcerá P.
    • et al.

    DirectMX – One-step reconstitution of membrane proteins from crude cell membranes into salipro nanoparticles.

    Front. Bioeng. Biotechnol. 2020; 8: 215

    • Lyons J.A.
    • et al.

    Saposin–lipoprotein scaffolds for structure determination of membrane transporters.

    Methods Enzymol. 2017; 594: 85-99

    • Ball L.E.
    • et al.

    Influence of DIBMA polymer length on lipid nanodisc formation and membrane protein extraction.

    Biomacromolecules. 2021; 22: 763-772

    • Logez C.
    • et al.

    Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles.

    Biochemistry. 2016; 55: 38-48

    • Lavington S.
    • Watts A.

    Detergent-free solubilisation & purification of a G protein coupled receptor using a polymethacrylate polymer.

    Biochim. Biophys. Acta Biomembr. 2021; 1863183441

    • Dimitrova V.S.
    • et al.

    Detergent alternatives: membrane protein purification using synthetic nanodisc polymers.

    Methods Mol. Biol. 2022; 2507: 375-387

    • Bayburt T.H.
    • et al.

    Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins.

    Nano Lett. 2002; 2: 853-856

    • Inagaki S.
    • et al.

    Biophysical characterization of membrane proteins in nanodiscs.

    Methods. 2013; 59: 287-300

    • Her C.
    • et al.

    The charge properties of phospholipid nanodiscs.

    Biophys. J. 2016; 111: 989-998

    • Julien J.A.
    • et al.

    Rapid preparation of nanodiscs for biophysical studies.

    Arch. Biochem. Biophys. 2021; 712109051

    • Mak S.
    • et al.

    Express incorporation of membrane proteins from various human cell types into phospholipid bilayer nanodiscs.

    Biochem. J. 2017; 474: 1361-1371

    • Civjan N.
    • et al.

    Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.

    Biotechniques. 2003; 35: 556-563

    • Duan H.
    • et al.

    Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers.

    Arch. Biochem. Biophys. 2004; 424: 141-153

    • Marty M.T.
    • et al.

    Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Anal. Bioanal. Chem. 2013; 405: 4009-4016

    • Zhao D.Y.
    • et al.

    Cryo-EM structure of the native rhodopsin dimer in nanodiscs.

    J. Biol. Chem. 2019; 294: 14215-14230

    • Bayburt T.H.
    • et al.

    Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins.

    J. Biol. Chem. 2007; 282: 14875-14881

    • Huang W.
    • et al.

    Structure of the neurotensin receptor 1 in complex with β-arrestin 1.

    Nature. 2020; 579: 303-308

    • Lee Y.
    • et al.

    Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor.

    Nature. 2020; 583: 862-866

    • Maharana J.
    • et al.

    Emerging structural insights into GPCR–β-arrestin interaction and functional outcomes.

    Curr. Opin. Struct. Biol. 2022; 75102406

    • Zhang M.
    • et al.

    Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs.

    Nat. Struct. Mol. Biol. 2021; 28: 258-267

    • Nasr M.L.
    • et al.

    Covalently circularized nanodiscs for studying membrane proteins and viral entry.

    Nat. Methods. 2017; 14: 49-52

    • Johansen N.T.
    • et al.

    Circularized and solubility-enhanced MSPs facilitate simple and high-yield production of stable nanodiscs for studies of membrane proteins in solution.

    FEBS J. 2019; 286: 1734-1751

    • Sun R.
    • et al.

    Nanodiscs incorporating native β1 adrenergic receptor as a novel approach for the detection of pathological autoantibodies in patients with dilated cardiomyopathy.

    J. Appl. Lab. Med. 2019; 4: 391-403

    • Gardill B.
    • et al.

    Nanodisc technology facilitates identification of monoclonal antibodies targeting multi-pass membrane proteins.

    Sci. Rep. 2020; 10: 1130

    • Shamin M.
    • et al.

    A tetrameric assembly of saposin A: increasing structural diversity in lipid transfer proteins.

    Contact. 2021; 4: 1-11

    • Kishimoto Y.
    • et al.

    Saposins: structure, function, distribution, and molecular genetics.

    J. Lipid Res. 1992; 33: 1255-1267

    • Popovic K.
    • et al.

    Structure of saposin A lipoprotein discs.

    PNAS. 2011; 109: 2908-2912

    • Chien C.T.H.
    • et al.

    An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins.

    J. Am. Chem. Soc. 2017; 139: 14829-14832

    • Rahman M.M.
    • et al.

    Purification of a native nicotinic receptor.

    Methods Enzymol. 2021; 653: 189-206

    • Zhou F.
    • et al.

    Footprinting mass spectrometry of membrane proteins: ferroportin reconstituted in saposin A picodiscs.

    Anal. Chem. 2021; 93: 11370-11378

    • Du D.
    • et al.

    Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment.

    Structure. 2020; 28: 625-634

    • Zhang K.
    • et al.

    Fusion protein strategies for cryo-EM study of G protein-coupled receptors.

    Nat. Commun. 2022; 13: 4366

    • Rahman M.M.
    • et al.

    Structure of the native muscle-type nicotinic receptor and inhibition by snake venom toxins.

    Neuron. 2020; 106: 952-962

    • Noviello C.M.
    • et al.

    Structure and gating mechanism of the α7 nicotinic acetylcholine receptor.

    Cell. 2021; 184: 2121-2134

    • Gharpure A.
    • et al.

    Agonist selectivity and Ion permeation in the α3β4 ganglionic nicotinic receptor.

    Neuron. 2019; 104: 501-511

    • Hawkins O.P.
    • et al.

    Membrane protein extraction and purification using partially-esterified SMA polymers.

    Biochim. Biophys. Acta Biomembr. 2021; 1863183758

    • Knowles T.J.
    • et al.

    Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer.

    J. Am. Chem. Soc. 2009; 131: 7484-7485

    • Bada Juarez J.F.
    • et al.

    Detergent-free extraction of a functional low-expressing GPCR from a human cell line.

    Biochim. Biophys. Acta Biomembr. 2020; 1862183152

    • Morrison K.A.
    • et al.

    Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    Biochem. J. 2016; 473: 4349-4360

    • Dörr J.M.
    • et al.

    Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs.

    Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 18607-18612

    • Stroud Z.
    • et al.

    Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights.

    Methods. 2018; 147: 106-117

    • Qiu W.
    • et al.

    Structure and activity of lipid bilayer within a membrane-protein transporter.

    PNAS. 2018; 115: 12985-12990

    • Parmar M.
    • et al.

    Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure.

    Biochim. Biophys. Acta Biomembr. 2018; 1860: 378-383

    • Li J.
    • et al.

    Cryo-EM structures of Escherichia coli cytochrome bo3 reveal bound phospholipids and ubiquinone-8 in a dynamic substrate binding site.

    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2106750118

    • Sun C.
    • et al.

    Structure of the alternative complex III in a supercomplex with cytochrome oxidase.

    Nature. 2018; 557: 123-126

    • Hall S.C.L.
    • et al.

    An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles.

    Nanoscale. 2018; 10: 10609-10619

    • Ravula T.
    • et al.

    Bioinspired, size-tunable self-assembly of polymer–lipid bilayer nanodiscs.

    Angew. Chem. Int. Ed. 2017; 56: 11466-11470

    • Ravula T.
    • et al.

    Formation of pH-resistant monodispersed polymer–lipid nanodiscs.

    Angew. Chem. 2018; 130: 1356-1359

    • Ravula T.
    • et al.

    Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs.

    Chem. Commun. 2018; 54: 9615-9618

    • Ravula T.
    • Ramamoorthy A.

    Measurement of residual dipolar couplings using magnetically aligned and flipped nanodiscs.

    Langmuir. 2022; 38: 244-252

    • Ravula T.
    • Ramamoorthy A.

    Magnetic alignment of polymer macro-nanodiscs enables residual-dipolar-coupling-based high-resolution structural studies by NMR spectroscopy.

    Angew. Chem. Int. Ed. 2019; 58: 14925-14928

    • Oluwole A.O.
    • et al.

    Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer.

    Angew. Chem. 2017; 56: 1919-1924

    • Yasuhara K.
    • et al.

    Spontaneous lipid nanodisc fomation by amphiphilic polymethacrylate copolymers.

    J. Am. Chem. Soc. 2017; 139: 18657-18663

    • Ravula T.
    • et al.

    Synthesis, characterization, and nanodisc formation of non-ionic polymers.

    Angew. Chem. Int. Ed. 2021; 60: 16885-16888

    • Gulamhussein A.A.
    • et al.

    A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification.

    Biochim. Biophys. Acta Biomembr. 2020; 1862183281

    • Voskoboynikova N.
    • et al.

    Lipid dynamics in diisobutylene-maleic acid (DIBMA) lipid particles in presence of sensory rhodopsin II.

    Int. J. Mol. Sci. 2021; 22: 2548

    • Harwood C.R.
    • et al.

    Functional solubilization of the β2-adrenoceptor using diisobutylene maleic acid.

    iScience. 2021; 24103362

    • Oluwole A.O.
    • et al.

    Formation of lipid-bilayer nanodiscs by diisobutylene/maleic acid (DIBMA) copolymer.

    Langmuir. 2017; 33: 14378-14388

    • Krishnarjuna B.
    • et al.

    Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions.

    J. Colloid Interface Sci. 2023; 634: 887-896

    • Krishnarjuna B.
    • et al.

    Non-ionic inulin-based polymer nanodiscs enable functional reconstitution of a redox complex composed of oppositely charged CYP450 and CPR in a lipid bilayer membrane.

    Anal. Chem. 2022; 94: 11908-11915

    • Kehlenbeck D.M.
    • et al.

    Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study.

    Biol. Chem. 2019; 400: 1509-1518

    • Denisov I.G.
    • et al.

    Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation.

    J. Biol. Chem. 2007; 282: 7066-7076

    • Grinkova Y.v.
    • et al.

    Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers.

    Protein Eng. Des. Sel. 2010; 23: 843-848

    • Hagn F.
    • et al.

    Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.

    J. Am. Chem. Soc. 2013; 135: 1919-1925

    • Miehling J.
    • et al.

    A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins.

    ChemBioChem. 2018; 19: 1927-1933

    • Yusuf Y.
    • et al.

    Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions.

    Langmuir. 2018; 34: 3525-3532

    • Zhang S.
    • et al.

    One-step construction of circularized nanodiscs using SpyCatcher-SpyTag.

    Nat. Commun. 2021; 12: 5451

  • Time Stamp:

    More from Biotechnology Trends