Atomically sharp interface enabled uahigh-speed non-volatile memory devices

Source Node: 845327
  • 1.

    International Roadmap for Devices and Systems (IRDS) https://irds.ieee.org/ (2017).

  • 2.

    Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).

    Article  CAS  Google Scholar 

  • 3.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    CAS  Article  Google Scholar 

  • 4.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  • 5.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  • 6.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Feng, W., Zheng, W., Cao, W. & Hu, P. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26, 6587–6593 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Wu, L. et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 13, 1127–1132 (2020).

    CAS  Article  Google Scholar 

  • 9.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Article  Google Scholar 

  • 11.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS  Article  Google Scholar 

  • 13.

    Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS  Article  Google Scholar 

  • 15.

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

    Article  CAS  Google Scholar 

  • 17.

    Li, D. et al. Nonvolatile floating-gate memories based on stacked black phosphorus–boron nitride–MoS2 heterostructures. Adv. Funct. Mater. 25, 7360–7365 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Wang, S. et al. New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 5, 1800726 (2019).

    Article  CAS  Google Scholar 

  • 19.

    Hong, A. J. et al. Graphene flash memory. ACS Nano 5, 7812–7817 (2011).

    CAS  Article  Google Scholar 

  • 20.

    Lee, S. et al. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices. Appl. Phys. Lett. 100, 023109 (2012).

    Article  CAS  Google Scholar 

  • 21.

    Chen, M. et al. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Wang, J. et al. Floating gate memory‐based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 11, 208–213 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Zhang, E. et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9, 612–619 (2015).

    CAS  Article  Google Scholar 

  • 24.

    Feng, Q., Yan, F., Luo, W. & Wang, K. Charge trap memory based on few-layer black phosphorus. Nanoscale 8, 2686–2692 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Lee, D. et al. Black phosphorus nonvolatile transistor memory. Nanoscale 8, 9107–9112 (2016).

    CAS  Article  Google Scholar 

  • 26.

    Liu, C. et al. Eliminating overerase behavior by designing energy band in high‐speed charge‐trap memory based on WSe2. Small 13, 1604128 (2017).

    Article  CAS  Google Scholar 

  • 27.

    Wang, P. F. et al. A semi-floating gate transistor for low-voltage ultrafast memory and sensing operation. Science 341, 640–643 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Kahng, D. & Sze, S. M. A floating gate and its application to memory devices. Bell Syst. Tech. J. 46, 1288–1295 (1967).

    Article  Google Scholar 

  • 30.

    Lee, J.-D., Hur, S.-H. & Choi, J.-D. Effects of floating-gate interference on NAND flash memory cell operation. IEEE Electron Device Lett. 23, 264–266 (2002).

    CAS  Article  Google Scholar 

  • 31.

    Misra, A. et al. Multilayer graphene as charge storage layer in floating gate flash memory. In 2012 4th IEEE International Memory Workshop 1–4 (2012).

  • 32.

    Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Article  Google Scholar 

  • 34.

    Cho, T. et al. A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes. IEEE J. Solid-State Circuits 36, 1700–1706 (2001).

    Article  Google Scholar 

  • 35.

    Xiang, D. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018).

    Article  CAS  Google Scholar 

  • 36.

    Tran, M. D. et al. Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 31, 1807075 (2019).

    Article  CAS  Google Scholar 

  • 37.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  CAS  Google Scholar 

  • 38.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  • 39.

    Pan, Y. et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21, 2777–2780 (2009).

    CAS  Article  Google Scholar 

  • 40.

    Shi, Z. et al. Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    CAS  Article  Google Scholar 

  • 41.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Article  Google Scholar 

  • 42.

    Liu, L., Ding, Y., Li, J., Liu, C. & Zhou, P. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Preprint at https://arxiv.org/abs/2009.01581 (2020).

  • 43.

    Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Article  Google Scholar 

  • 44.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS  Article  Google Scholar 

  • 45.

    Wang, G. et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 16, 6870–6878 (2016).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00904-5

    Time Stamp:

    More from Nature Nanotechnology