Electrical and thermal generation of spin currents by magnetic bilayer graphene

Source Node: 845323
  • 1.

    Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Article  Google Scholar 

  • 2.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Article  Google Scholar 

  • 3.

    Slonczewski, J. C. et al. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  • 4.

    Myers, E., Ralph, D., Katine, J., Louie, R. & Buhrman, R. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    CAS  Article  Google Scholar 

  • 5.

    Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  • 6.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  • 9.

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  • 10.

    Abergel, D., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010).

    CAS  Article  Google Scholar 

  • 11.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS  Article  Google Scholar 

  • 12.

    Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    Article  CAS  Google Scholar 

  • 13.

    Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008).

    Article  CAS  Google Scholar 

  • 15.

    Yang, H.-X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Zollner, K., Gmitra, M., Frank, T. & Fabian, J. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016).

    Article  CAS  Google Scholar 

  • 17.

    Asshoff, P. et al. Magnetoresistance of vertical co-graphene–NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).

    Article  CAS  Google Scholar 

  • 18.

    Behera, S. K., Bora, M., Chowdhury, S. S. P. & Deb, P. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 25788–25796 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Wu, Y.-F. et al. Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B 95, 195426 (2017).

    Article  Google Scholar 

  • 21.

    Tang, C., Zhang, Z., Lai, S., Tan, Q. & Gao, W.-b. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv. Mater. 32, 1908498 (2020).

    CAS  Article  Google Scholar 

  • 22.

    Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Tang, C. et al. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure. APL Mater. 6, 026401 (2018).

    Article  CAS  Google Scholar 

  • 24.

    Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & Van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2016).

    Article  CAS  Google Scholar 

  • 25.

    Singh, S. et al. Strong modulation of spin currents in bilayer graphene by static and fluctuating proximity exchange fields. Phys. Rev. Lett. 118, 187201 (2017).

    Article  Google Scholar 

  • 26.

    Karpiak, B. et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 7, 015026 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Cummings, A. W. Probing magnetism via spin dynamics in graphene/2D-ferromagnet heterostructures. J. Phys. Mater. 2, 045007 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    CAS  Article  Google Scholar 

  • 29.

    Michetti, P., Recher, P. & Iannaccone, G. Electric field control of spin rotation in bilayer graphene. Nano Lett. 10, 4463–4469 (2010).

    CAS  Article  Google Scholar 

  • 30.

    Michetti, P. & Recher, P. Spintronics devices from bilayer graphene in contact to ferromagnetic insulators. Phys. Rev. B 84, 125438 (2011).

    Article  CAS  Google Scholar 

  • 31.

    Zollner, K., Gmitra, M. & Fabian, J. Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn. New J. Phys. 20, 073007 (2018).

    Article  CAS  Google Scholar 

  • 32.

    Cardoso, C., Soriano, D., García-Martínez, N. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Göser, O., Paul, W. & Kahle, H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article  Google Scholar 

  • 35.

    Wang, H., Qi, J. & Qian, X. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117, 083102 (2020).

    CAS  Article  Google Scholar 

  • 36.

    Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    CAS  Article  Google Scholar 

  • 37.

    Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Preprint at http://arxiv.org/abs/2007.10715 (2020).

  • 38.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    CAS  Article  Google Scholar 

  • 41.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    CAS  Article  Google Scholar 

  • 42.

    Rameshti, B. Z. & Moghaddam, A. G. Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Phys. Rev. B 91, 155407 (2015).

    Article  CAS  Google Scholar 

  • 43.

    Villamor, E., Isasa, M., Hueso, L. E. & Casanova, F. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. Phys. Rev. B 88, 184411 (2013).

    Article  CAS  Google Scholar 

  • 44.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  • 45.

    Song, G., Ranjbar, M. & Kiehl, R. A. Operation of graphene magnetic field sensors near the charge neutrality point. Commun. Phys. 2, 95 (2019).

    Article  CAS  Google Scholar 

  • 46.

    Mendes, J. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  • 48.

    Tse, W.-K., Qiao, Z., Yao, Y., MacDonald, A. H. & Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Phys. Rev. B 83, 155447 (2011).

    Article  CAS  Google Scholar 

  • 49.

    Zhou, B., Chen, X., Wang, H., Ding, K.-H. & Zhou, G. Magnetotransport and current-induced spin transfer torque in a ferromagnetically contacted graphene. J. Phys. Condens. Matter 22, 445302 (2010).

    Article  CAS  Google Scholar 

  • 50.

    Chappert, C., Fert, A. & Van Dau, F. N. Nanoscience and Technology: A Collection of Reviews from Nature Journals (ed. Rodgers, P.) 147–157 (World Scientific, 2010).

  • 51.

    Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  • 52.

    Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).

    CAS  Article  Google Scholar 

  • 53.

    Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  CAS  Google Scholar 

  • 54.

    Beck, J. Über chalkogenidhalogenide des chroms synthese, kristallstruktur und magnetismus von chromsulfidbromid, crsbr. Z. Anorg. Allg. Chem. 585, 157–167 (1990).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00887-3

    Time Stamp:

    More from Nature Nanotechnology