Hacking DNA To Make 3D Nanostructures

Hacking DNA To Make 3D Nanostructures

Source Node: 2468417

A technical paper titled “Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating” was published by researchers at Brookhaven National Laboratory, Columbia University, and Stony Brook University.


“Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.”

Find the technical paper here. Published January 2024.

Michelson, Aaron, Ashwanth Subramanian, Kim Kisslinger, Nikhil Tiwale, Shuting Xiang, Eric Shen, Jason S. Kahn et al. “Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating.” Science Advances 10, no. 2 (2024): eadl0604.

Related Reading
Nanoimprint Finally Finds Its Footing
Technology and business issues mean it won’t replace EUV, but photonics, biotech and other markets provide plenty of room for growth.
Process Innovations Enabling Next-Gen SoCs And Memories
A look at the architectures, tooling, and materials that make 3D NANDs, advanced DRAM, and 5nm SoCs possible.

Time Stamp:

More from Semi Engineering