Nanophotonics for light detection and ranging technology

Source Node: 845321
  • 1.

    Smullin, L. D. & Fiocco, G. Optical echoes from the moon. Nature 194, 1267 (1962).

    Article  Google Scholar 

  • 2.

    Christian, J. A. & Cryan, A. A survey of LiDAR technology and its use in spacecraft relative navigation. In Proc. AIAA Guidance, Navigation and Control Conference. 1–7 (American Institute of Aeronautics And Astronautics, 2013).

  • 3.

    Royo, S. & Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 9, 4093 (2019).

    Article  Google Scholar 

  • 4.

    Kaul, L., Zlot, R. & Bosse, M. Continuous-time three-dimensional mapping for micro aerical vehicles with a passively actuated rotating laser scanner. J. Field Robot. 33, 103–132 (2016).

    Article  Google Scholar 

  • 5.

    Ham, Y., Han, K. K., Lin, J. J. & Goparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works. Visual. Eng. 4, 1 (2016).

    Article  Google Scholar 

  • 6.

    LiDAR drives forwards. Nat. Photon. 12, 441 (2018).

  • 7.

    Jiang, Y., Karpf, S. & Jalali, B. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nat. Photon. 14, 14–18 (2020).

    CAS  Article  Google Scholar 

  • 8.

    Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 3451–351 (2017).

    Article  CAS  Google Scholar 

  • 9.

    Na, Y. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photon. 14, 355–360 (2020).

    CAS  Article  Google Scholar 

  • 10.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Shuttleworth, J. AE Standards News: J3016 automated-driving graphic update. SAE Inernational https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic (2019).

  • 14.

    Hecht, J. Lasers for LiDAR: FMCW lidar: an alternative for self-driving cars. LaserFocusWorld https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars (2019).

  • 15.

    LiDAR for Automotive and Industrial Applications 2019: Market & Technology Report (Yole Développement, 2019).

  • 16.

    Shpunt, A. & Erlich, R. Scanning depth engine. US patent 10,261,578 (2019).

  • 17.

    Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurfaces at 1550 nm with wide (>300°) phase tenability. Nano Lett. 18, 2957–2963 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Lesina, A. C., Goodwill, D., Bernier, E., Ramunno, L. & Berini, P. Tunable plasmonic metasurfaces for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 27, 4700116 (2020).

    Google Scholar 

  • 22.

    Liberal, I., Li, Y. & Engheta, N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 7, 1117–1127 (2018).

    CAS  Article  Google Scholar 

  • 23.

    Brière, G. et al. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 7, 1801271 (2019).

    Article  CAS  Google Scholar 

  • 24.

    Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345–6352 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Lee, J. et al. Ultrafast electrically tunable polaritonic metausrfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  CAS  Google Scholar 

  • 28.

    Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    CAS  Article  Google Scholar 

  • 29.

    Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tenability. Nano Lett. 10, 4222–4227 (2010).

    CAS  Article  Google Scholar 

  • 30.

    Cui, Y., Zhou, J., Tamma, V. A. & Park, W. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385–2393 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Gutruf, P. et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10, 133–141 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Reeves, J. B. et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Lett. 18, 2802–2806 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Ee, H.-S. & Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016).

    CAS  Article  Google Scholar 

  • 35.

    She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Article  CAS  Google Scholar 

  • 36.

    Wang, J., Zhang, G. & You, Z. Design rules for dense and rapid Lissajous scanning. Microsyst. Nanoeng. 6, 101 (2020).

    Article  Google Scholar 

  • 37.

    Oshita, M., Takahashi, H., Ajiki, Y. & Kan, T. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photon. 7, 673–679 (2020).

    CAS  Article  Google Scholar 

  • 38.

    Li, S.-Q. et al. Phase-only transmissive SLM based on tunable dielectric metasurfaces. Science 364, 1087–1090 (2019).

    CAS  Article  Google Scholar 

  • 39.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–276 (2017).

    CAS  Article  Google Scholar 

  • 40.

    Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    CAS  Article  Google Scholar 

  • 41.

    Rensberg, J. et al. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett. 16, 1050–1055 (2016).

    CAS  Article  Google Scholar 

  • 42.

    De Galarreta, C. R. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476–484 (2020).

    Article  Google Scholar 

  • 43.

    Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Lei, D. Y., Appavoo, K., Sonnefraud, Y., Haglund, R. F. & Maier, S. A. Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. Opt. Express 35, 3988–3990 (2010).

    CAS  Google Scholar 

  • 45.

    Kaplan, G., Aydin, K. & Scheuer, J. Dynamically controlled plasmonic nano-antenna phase array utilizing vanadium dioxide. Opt. Mater. Exp. 5, 2513–2524 (2015).

    CAS  Article  Google Scholar 

  • 46.

    Butakov, N. A. et al. Switchable plasmonic-dielectric resonators with metal-insulator transitions. ACS Photon. 5, 371–377 (2018).

    CAS  Article  Google Scholar 

  • 47.

    Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    CAS  Article  Google Scholar 

  • 48.

    Kim, S.-J. et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light. Nanoscale Horiz. 5, 1088–1095 (2020).

    CAS  Article  Google Scholar 

  • 49.

    Savaliya, P. B., Gupta, N. & Dhawan, A. Steerable plasmonic nanoantennas: active beam steering of radiation patterns using phase change materials. Opt. Express 27, 31567–31586 (2019).

    CAS  Article  Google Scholar 

  • 50.

    Gnecchi, S. & Jackson, C. A 1 × 16 SiPM array for automotive 3D imaging LiDAR systems. In International Image Sensor Workshop (IISW) 133–136 (International Image Sensor Society, 2017).

  • 51.

    Ni, Y. et al. Metasurface for structured light projection over 120° field of view. Nano Lett. 20, 6719–6724 (2020).

    CAS  Article  Google Scholar 

  • 52.

    Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light. Sci. Appl. 7, 63 (2018).

    Article  CAS  Google Scholar 

  • 53.

    Chen, K. et al. 2π-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light. Opt. Express 28, 12331–12341 (2020).

    CAS  Article  Google Scholar 

  • 54.

    Li, N. et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics 8, 1855–1861 (2019).

    CAS  Article  Google Scholar 

  • 55.

    Jin, C. et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv. Photon. 1, 036001 (2019).

    CAS  Article  Google Scholar 

  • 56.

    Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).

    CAS  Article  Google Scholar 

  • 57.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 17, 896–901 (2017).

    Article  CAS  Google Scholar 

  • 58.

    Mahmood, N. et al. Twisted non-diffracting beams through all dielectric meta-axicon. Nanoscale 11, 20571–20578 (2019).

    CAS  Article  Google Scholar 

  • 59.

    Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    CAS  Article  Google Scholar 

  • 60.

    Cvijetic, N., Milione, G., Ip, E. & Wang, T. Detecting lateral motion using light’s orbital angular momentum. Sci. Rep. 5, 15422 (2015).

    CAS  Article  Google Scholar 

  • 61.

    Dorrah, A. H., Zamboni-Rached, M. & Mojahedi, M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci. Appl. 7, 40 (2018).

    Article  CAS  Google Scholar 

  • 62.

    Geng, J. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon. 3, 128–160 (2011).

    CAS  Article  Google Scholar 

  • 63.

    Khaidarov, E. et al. Control of LED Emission with functional dielectric metasurfaces. Laser Photon. Rev. 14, 1900235 (2020).

    CAS  Article  Google Scholar 

  • 64.

    Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photon. 14, 543–548 (2020).

    CAS  Article  Google Scholar 

  • 65.

    Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    CAS  Article  Google Scholar 

  • 66.

    Wang, Q.-H. et al. On-chip generation of structured light via metasurface integrated vertical cavity surface emitting lasers. Laser Photon. Rev. 15, 2000385 (2021).

    CAS  Article  Google Scholar 

  • 67.

    Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640–4645 (2018).

    CAS  Article  Google Scholar 

  • 68.

    Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 39, 5512–5517 (2000).

    CAS  Article  Google Scholar 

  • 69.

    Schuhler, N., Salvadé, Y., Lévêque, S., Dändliker, R. & Holzwarth, R. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 31, 3101–3103 (2006).

    Article  Google Scholar 

  • 70.

    Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351–356 (2009).

    CAS  Article  Google Scholar 

  • 71.

    Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    CAS  Article  Google Scholar 

  • 72.

    Davoyan, A. & Atwater, H. Perimeter-control architecture for optical phased arrays and metasurfaces. Phys. Rev. Appl. 14, 024038 (2020).

    CAS  Article  Google Scholar 

  • 73.

    Dostart, N. et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica 7, 726–733 (2020).

    CAS  Article  Google Scholar 

  • 74.

    Hutchison, D. N. et al. High-resolution aliasing-free optical beam steering. Optica 3, 887–890 (2016).

    CAS  Article  Google Scholar 

  • 75.

    Komljenovic, T., Helkey, R., Coldren, L. & Bowers, J. E. Sparse aperiodic arrays for optical beam forming and LIDAR. Opt. Express 25, 2511–2528 (2017).

    Article  Google Scholar 

  • 76.

    Shaltout, A. M. et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019).

    CAS  Article  Google Scholar 

  • 77.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    CAS  Article  Google Scholar 

  • 78.

    Liu, Z. et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater. 32, 1904790 (2020).

    CAS  Article  Google Scholar 

  • 79.

    Ma, W., Cheng, F., Xu, Y., Wen, Q. & Liu, Y. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).

    Article  CAS  Google Scholar 

  • 80.

    Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

    CAS  Article  Google Scholar 

  • 81.

    Malkiel, I. et al. Plasmonic nanostructure design and characterizations via deep learning. Light. Sci. Appl. 7, 60 (2018).

    Article  CAS  Google Scholar 

  • 82.

    So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).

    Article  Google Scholar 

  • 83.

    So, S. & Rho, J. Designing nanophotonic structure using conditional-deep convolutional generative adversarial networks. Nanophotonics 8, 1255–1261 (2019).

    Article  Google Scholar 

  • 84.

    Elsawy, M. M. R., Lanteri, S., Duvigneau, R., Fan, J. A. & Genevet, P. Numerical optimization methods for metasurfaces. Laser Photon. Rev. 14, 1900445 (2020).

    CAS  Article  Google Scholar 

  • 85.

    She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018).

    CAS  Article  Google Scholar 

  • 86.

    Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    CAS  Article  Google Scholar 

  • 87.

    Li, N. et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics 9, 3071–3087 (2020).

    Article  Google Scholar 

  • 88.

    Kim, K., Yoon, G., Baek, S., Rho, J. & Lee, H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces 11, 26109–26115 (2019).

    CAS  Article  Google Scholar 

  • 89.

    Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    CAS  Article  Google Scholar 

  • 90.

    Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002).

    CAS  Article  Google Scholar 

  • 91.

    Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549–554 (2007).

    CAS  Article  Google Scholar 

  • 92.

    Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    CAS  Article  Google Scholar 

  • 93.

    Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    CAS  Article  Google Scholar 

  • 94.

    Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020).

    CAS  Article  Google Scholar 

  • 95.

    Ferrari, S., Carsten, S. & Wolfram, P. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).

    CAS  Article  Google Scholar 

  • 96.

    Yang, Y. et al. Ferroelectric enhanced performance of GeSn/Ge dual-nanowire photodetector. Nano Lett. 20, 3872–3879 (2020).

    CAS  Article  Google Scholar 

  • 97.

    Kuzmenko, K. et al. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors. Opt. Express 28, 1330–1344 (2020).

    CAS  Article  Google Scholar 

  • 98.

    Katiyar, A. K., Thai, K. Y., Yun, W. S., Lee, J. & Ahn, J.-H. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv. 6, eabb0576 (2020).

    CAS  Article  Google Scholar 

  • 99.

    Akselrod, G. M. Optics for automotive lidar: metasurface beam steering enables solid-state, high-performance lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14036818/metasurface-beam-steering-enables-solidstate-highperformance-lidar (2019).

  • 100.

    Wallace, J. Lumotive and Himax collaborate on metasurface approach to beam steering for lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14039216/lumotive-and-himax-collaborate-on-metasurface-approach-to-beam-steering-for-lidar (2019).

  • 101.

    Akselrod, G. M., Yang, Y. & Bowen, P. Tunable liquid crystal metasurfaces. US patent 10,665,953 (2020).

  • 102.

    Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–75 (2021).

    CAS  Article  Google Scholar 

  • 103.

    Yi, S. et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143–1147 (2018).

    CAS  Article  Google Scholar 

  • 104.

    Lee, J., Kim, Y. J., Lee, K., Lee, S. & Kim, S. W. Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

    CAS  Article  Google Scholar 

  • 105.

    Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).

    Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00895-3

    Time Stamp:

    More from Nature Nanotechnology