Nanoplastics are neither microplastics nor engineered nanoparticles

Source Node: 836536
  • 1.

    Eriksen, M. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article  CAS  Google Scholar 

  • 2.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  CAS  Google Scholar 

  • 3.

    Jambeck, J. R. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Sebille, Evan A global inventory of small floating plastic debris. Env. Res Lett. 10, 124006 (2015).

    Article  Google Scholar 

  • 5.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Ekvall, M. T. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 1, 1055–1061 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Dawson, A. L. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  CAS  Google Scholar 

  • 10.

    Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS  Article  Google Scholar 

  • 11.

    Ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article  CAS  Google Scholar 

  • 12.

    Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. & Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Chen, Z., Westerhoff, P. & Herckes, P. Quantification of C60 fullerene concentrations in water. Env. Toxicol. Chem. 27, 1852–1859 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Benn, T. M. & Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Env. Sci. Technol. 42, 4133–4139 (2008).

    CAS  Article  Google Scholar 

  • 15.

    Wang, Y., Westerhoff, P. & Hristovski, K. D. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mater. 201–202, 16–22 (2012).

    Article  CAS  Google Scholar 

  • 16.

    Gangadoo, S. et al. Nano-plastics and their analytical characterisation and fate in the marine environment: from source to sea. Sci. Total Environ. 732, 138792 (2020).

    CAS  Article  Google Scholar 

  • 17.

    Gigault, J. et al. Current opinion: what is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Rist, S. & Hartmann, N. B. in Freshwater Microplastics: Emerging Environmental Contaminants? (eds Wagner, M. & Lambert, S.) 25–49 (Springer, 2018).

  • 19.

    Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009).

    CAS  Article  Google Scholar 

  • 21.

    Isaacson, C. W., Kleber, M. & Field, J. A. Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ. Sci. Technol. 43, 6463–6474 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Plastics: The Facts 2019 (PlasticsEurope, 2019); https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019

  • 23.

    Resnik, D. B. How should engineered nanomaterials be regulated for public and environmental health? AMA J. Ethics 21, 363–369 (2019).

    Article  Google Scholar 

  • 24.

    Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Sander, M., Kohler, H.-P. E. & McNeill, K. Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nat. Nanotechnol. 14, 301–303 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Liu, P. et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere 242, 125193 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Balakrishnan, G., Déniel, M., Nicolai, T., Chassenieux, C. & Lagarde, F. Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environ. Sci. Nano 6, 315–324 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Pessoni, L. et al. Soap- and metal-free polystyrene latex particles as a nanoplastic model. Environ. Sci. Nano 6, 2253–2258 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Wagner, S. & Reemtsma, T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 14, 300–301 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Koelmans, A. A. Proxies for nanoplastic. Nat. Nanotechnol. 14, 307–308 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Azimi, P., Zhao, D., Pouzet, C., Crain, N. E. & Stephens, B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50, 1260–1268 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    CAS  Article  Google Scholar 

  • 36.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    CAS  Article  Google Scholar 

  • 37.

    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS  Article  Google Scholar 

  • 38.

    Muncke, J. Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci. Total Environ. 407, 4549–4559 (2009).

    CAS  Article  Google Scholar 

  • 39.

    Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53, 11467–11477 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    CAS  Article  Google Scholar 

  • 41.

    Crank J. The Mathematics of Diffusion (Elsevier, 1975).

  • 42.

    Mercea, P. V. et al. Modelling migration of substances from polymers into drinking water. Part 1 – diffusion coefficient estimations. Polym. Test. 65, 176–188 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Karlsson, H. L., Gustafsson, J., Cronholm, P. & Möller, L. Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol. Lett. 188, 112–118 (2009).

    CAS  Article  Google Scholar 

  • 45.

    Ruenraroengsak, P. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6, 94–108 (2012).

    CAS  Article  Google Scholar 

  • 46.

    Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    CAS  Article  Google Scholar 

  • 47.

    Zhao, J. & Stenzel, M. H. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 9, 259–272 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Johnston, C. J. et al. Pulmonary effects induced by ultrafine PTFE particles. Toxicol. Appl. Pharmacol. 168, 208–215 (2000).

    CAS  Article  Google Scholar 

  • 49.

    Schwab, F. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10, 257–278 (2016).

    CAS  Article  Google Scholar 

  • 50.

    Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro- and nanoplastics in Daphnia magna – quantification of body burdens and assessment of feeding rates and reproduction. Environ. Pollut. 228, 398–407 (2017).

    CAS  Article  Google Scholar 

  • 51.

    Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Astefanei, A. et al. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. J. Chromatogr. A 1408, 197–206 (2015).

    CAS  Article  Google Scholar 

  • 53.

    Bolea, E., Jiménez-Lamana, J., Laborda, F. & Castillo, J. R. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 401, 2723–2732 (2011).

    CAS  Article  Google Scholar 

  • 54.

    Kammer, F., von der, Legros, S., Hofmann, T., Larsen, E. H. & Loeschner, K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal. Chem. 30, 425–436 (2011).

    Article  CAS  Google Scholar 

  • 55.

    Baalousha, M., Stolpe, B. & Lead, J. R. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. A 1218, 4078–4103 (2011).

    CAS  Article  Google Scholar 

  • 56.

    Gigault, J., El Hadri, H., Reynaud, S., Deniau, E. & Grassl, B. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal. Bioanal. Chem. 409, 6761–6769 (2017).

    CAS  Article  Google Scholar 

  • 57.

    Correia, M. & Loeschner, K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-018-0919-8 (2018).

  • 58.

    Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS  Article  Google Scholar 

  • 59.

    Domingos, R. F. et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009).

    CAS  Article  Google Scholar 

  • 60.

    Stone, V. et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 408, 1745–1754 (2010).

    CAS  Article  Google Scholar 

  • 61.

    Mintenig, S. M., Bäuerlein, P. S., Koelmans, A. A., Dekker, S. C. & Van Wezel, A. P. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    CAS  Article  Google Scholar 

  • 62.

    Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948 (2019).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00886-4

    Time Stamp:

    More from Nature Nanotechnology