Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics

Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics

Source Node: 1863337
    • Chandrasekaran A.R.

    Nuclease resistance of DNA nanostructures.

    Nat. Rev. Chem. 2021; 5: 225-239

    • Ke Y.G.
    • et al.

    Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning.

    Chem. Sci. 2012; 3: 2587-2597

    • Rangnekar A.
    • LaBean T.H.

    Building DNA DNA nanostructures for molecular computation, templated assembly, and biological applications.

    Acc. Chem. Res. 2014; 47: 1778-1788

    • Ali M.M.
    • et al.

    Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.

    Chem. Soc. Rev. 2014; 43: 3324-3341

    • Yan L.
    • et al.

    Isothermal amplified detection of DNA and RNA.

    Mol. BioSyst. 2014; 10: 970-1003

    • Huang R.R.
    • et al.

    Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers.

    Biosens. Bioelectron. 2018; 109: 27-34

    • Lv Y.
    • et al.

    Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.

    Nat. Protoc. 2015; 10: 1508-1524

    • Zhu G.
    • et al.

    Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    J. Am. Chem. Soc. 2013; 135: 16438-16445

    • Xu Y.W.
    • et al.

    Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.

    Biomater. Sci. 2022; 10: 3054-3061

    • Li X.
    • et al.

    A facile DNA/RNA nanoflower for sensitive imaging of telomerase RNA in living cells based on “zipper lock-and-key” strategy.

    Biosens. Bioelectron. 2020; 147111788

    • Kim N.
    • et al.

    Tumor-targeting cholesterol-decorated DNA nanoflowers for intracellular ratiometric aptasensing.

    Adv. Mater. 2021; 33e2007738

    • Cai R.
    • et al.

    Self-assembled DNA nanoflowers triggered by a DNA walker for highly sensitive electrochemical detection of Staphylococcus aureus.

    ACS Appl. Mater. Interfaces. 2021; 13: 4905-4914

    • Tran T.D.
    • et al.

    DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices.

    Biosens. Bioelectron. 2021; 182113187

    • Dong Y.H.
    • et al.

    DNA functional materials assembled from branched DNA: design, synthesis, and applications.

    Chem. Rev. 2020; 120: 9420-9481

    • Lee J.
    • et al.

    A mechanical metamaterial made from a DNA hydrogel.

    Nat. Nanotechnol. 2012; 7: 816-820

    • Kim Y.S.
    • et al.

    Aptamer-based nanobiosensors.

    Biosens. Bioelectron. 2016; 76: 2-19

    • Mahlknecht G.
    • et al.

    Aptamer targeting the ERBB2 receptor tyrosine kinase for applications in tumor therapy.

    Methods Mol. Biol. 2015; 1317: 3-15

    • Li Q.S.
    • et al.

    Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery.

    ACS Appl. Mater. Interfaces. 2017; 9: 36695-36701

    • McConnell E.M.
    • et al.

    Biosensing with DNAzymes.

    Chem. Soc. Rev. 2021; 50: 8954-8994

    • Yang Y.R.
    • et al.

    DNA nanostructures as programmable biomolecular scaffolds.

    Bioconjug. Chem. 2015; 26: 1381-1395

    • Jaekel A.
    • et al.

    Manipulating enzymes properties with DNA nanostructures.

    Molecules. 2019; 24: 24

    • Shi J.
    • et al.

    MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing.

    Biomaterials. 2020; 256120221

    • Yang Y.L.
    • et al.

    DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy.

    J. Mat. Chem. B. 2020; 8: 9-17

    • Green C.M.
    • et al.

    Direct and efficient conjugation of quantum dots to DNA nanostructures with peptide–PNA.

    ACS Nano. 2021; 15: 9101-9110

    • Schlichthaerle T.
    • et al.

    DNA nanotechnology and fluorescence applications.

    Curr. Opin. Biotechnol. 2016; 39: 41-47

    • Wang S.
    • et al.

    Simultaneous imaging of three tumor-related mRNAs in living cells with a DNA tetrahedron-based multicolor nanoprobe.

    ACS Sens. 2017; 2: 735-739

    • Ma N.
    • et al.

    One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals.

    Nat. Nanotechnol. 2009; 4: 121-125

    • Jin Y.
    • et al.

    Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy.

    NPG Asia Mater. 2017; 9: e365

    • Mei L.
    • et al.

    Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery.

    Nano Res. 2015; 8: 3447-3460

    • Kim E.
    • et al.

    One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery.

    Adv. Mater. 2017; 29https://doi.org/10.1002/adma.201701086

    • Shen L.Y.
    • et al.

    DNA nanotechnology-based biosensors and therapeutics.

    Adv. Healthc. Mater. 2021; 10: 20

    • Ye D.K.
    • et al.

    DNA Nanotechnology-enabled interfacial engineering for biosensor development.

    Annu. Rev. Anal. Chem. 2018; 11: 171-195

    • Li F.
    • et al.

    DNA framework-engineered electrochemical biosensors.

    Sci. China Life Sci. 2020; 63: 1130-1141

    • Hu L.
    • et al.

    DNAzyme-gold nanoparticle-based probes for biosensing and bioimaging.

    J. Mat. Chem. B. 2020; 8: 9449-9465

    • Kong G.Z.
    • et al.

    DNA nanostructure-based fluorescent probes for cellular sensing.

    Anal. Methods. 2020; 12: 1415-1429

    • Prante M.
    • et al.

    Aptasensors for point-of-care detection of small molecules.

    Biosens. Basel. 2020; 10: 19

    • Crapnell R.D.
    • Banks C.E.

    Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms.

    Mikrochim. Acta. 2021; 188: 268

    • Maduraiveeran G.
    • et al.

    Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.

    Biosens. Bioelectron. 2018; 103: 113-129

    • Li S.K.
    • et al.

    In situ generation of electrochemiluminescent DNA nanoflowers as a signal tag for mucin 1 detection based on a strategy of target and mimic target synchronous cycling amplification.

    Chem. Commun. 2017; 53: 9624-9627

    • Liu Y.H.
    • et al.

    ChemistrySelect. 2022; 7: 8

    • Yan C.
    • et al.

    Ingenious electrochemiluminescence bioaptasensor based on synergistic effects and enzyme-driven programmable 3D DNA nanoflowers for ultrasensitive detection of aflatoxin B1.

    Anal. Chem. 2020; 92: 14122-14129

    • Chen Y.
    • et al.

    A synergistic coreactant for single-cell electrochemiluminescence imaging: guanine-rich ssDNA-loaded high-index faceted gold nanoflowers.

    Anal. Chem. 2021; 93: 7682-7689

    • Lv M.
    • et al.

    Engineering nanomaterials-based biosensors for food safety detection.

    Biosens. Bioelectron. 2018; 106: 122-128

    • Li H.B.
    • et al.

    Programmable DNA circuits for flexible and robust exciton-plasmon interaction-based photoelectrochemical biosensing.

    Anal. Chem. 2021; 93: 11043-11051

    • Li Y.
    • et al.

    Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers.

    J. Mater. Chem. B. 2021; 9: 6818-6824

    • Valero J.
    • Skugor M.

    Mechanisms, methods of tracking and applications of DNA walkers: a review.

    ChemPhysChem. 2020; 21: 1971-1988

    • Pashazadeh-Panahi P.
    • et al.

    Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors.

    Trac-Trends Anal. Chem. 2021; 141: 20

    • Zeng R.
    • et al.

    Horseradish peroxidase-encapsulated DNA nanoflowers: an innovative signal-generation tag for colorimetric biosensor.

    Talanta. 2021; 221121600

    • Wei Z.H.
    • et al.

    Bifunctional diblock DNA-mediated synthesis of nanoflower-shaped photothermal nanozymes for a highly sensitive colorimetric assay of cancer cells.

    ACS Appl. Mater. Interfaces. 2021; 13: 16801-16811

    • Hassan E.M.
    • DeRosa M.C.

    Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors.

    Trac-Trends Anal. Chem. 2020; 124: 11

    • Jung W.E.
    • et al.

    Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies.

    Microelectron. Eng. 2015; 132: 46-57

    • Qi L.
    • et al.

    A DNA nanoflower-assisted separation-free nucleic acid detection platform with a commercial pregnancy test strip.

    Angew. Chem. Int. Ed. Engl. 2021; 60: 24823-24827

    • Notomi T.
    • et al.

    Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects.

    J. Microbiol. 2015; 53: 1-5

    • Yu X.C.
    • et al.

    An aptamer-based new method for competitive fluorescence detection of exosomes.

    Nanoscale. 2019; 11: 15589-15595

    • Liu R.
    • et al.

    DNA-templated copper nanoparticles: versatile platform for label-free bioassays.

    Trac Trends Anal. Chem. 2018; 105: 436-452

    • Ma K.
    • et al.

    Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review.

    Anal. Chim. Acta. 2021; 1188: 13

    • Zhang L.
    • et al.

    Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base.

    J. Am. Chem. Soc. 2019; 141: 4282-4290

    • Meng H.M.
    • et al.

    Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy.

    Chem. Soc. Rev. 2016; 45: 2583-2602

    • Han S.
    • et al.

    Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    Nanoscale. 2017; 9: 14094-14102

    • Yao J.
    • et al.

    Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy.

    Chem. Rev. 2014; 114: 6130-6178

    • Xia Y.Q.
    • et al.

    Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    Chem. Soc. Rev. 2017; 46: 2824-2843

    • Yu X.
    • et al.

    Y-shaped DNA-mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells.

    Anal. Chim. Acta. 2019; 1057: 114-122

    • Deng R.
    • et al.

    DNA-sequence-encoded rolling circle amplicon for single-cell RNA imaging.

    Chem. 2018; 4: 1373-1386

    • Pu J.
    • et al.

    Mechanisms and functions of lysosome positioning.

    J. Cell Sci. 2016; 129: 4329-4339

    • Wei Y.
    • et al.

    Visualization of the intracellular location and stability of DNA flowers with a label-free fluorescent probe.

    RSC Adv. 2019; 9: 15205-15209

    • Leung N.L.C.
    • et al.

    Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission.

    Chem. Eur. J. 2014; 20: 15349-15353

    • Algar W.R.
    • et al.

    FRET as a biomolecular research tool-understanding its potential while avoiding pitfalls.

    Nat. Methods. 2019; 16: 815-829

    • Frances-Soriano L.
    • et al.

    In Situ rolling circle amplification Forster resonance energy transfer (RCA-FRET) for washing-free real-time single-protein imaging.

    Anal. Chem. 2021; 93: 1842-1850

    • Desrosiers A.
    • Vallee-Belisle A.

    Nature-inspired DNA switches: applications in medicine.

    Nanomedicine. 2017; 12: 175-179

    • Zhou J.H.
    • Rossi J.

    Aptamers as targeted therapeutics: current potential and challenges.

    Nat. Rev. Drug Discov. 2017; 16: 181-202

    • Li S.H.
    • et al.

    Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration.

    Small. 2021; 17: 12

    • Zhao H.X.
    • et al.

    Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy.

    ACS Appl. Mater. Interfaces. 2021; 13: 6034-6042

    • Li F.
    • et al.

    Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery.

    Nat. Commun. 2021; 12: 12

    • Yahya E.B.
    • Alqadhi A.M.

    Recent trends in cancer therapy: a review on the current state of gene delivery.

    Life Sci. 2021; 269: 15

    • Oh Y.K.
    • Park T.G.

    siRNA delivery systems for cancer treatment.

    Adv. Drug Deliv. Rev. 2009; 61: 850-862

    • Hosseinkhani H.
    • Domb A.J.

    Biodegradable polymers in gene-silencing technology.

    Polym. Adv. Technol. 2019; 30: 2647-2655

    • Lv J.
    • et al.

    Programmable DNA nanoflowers for biosensing, bioimaging, and therapeutics.

    Chemistry. 2020; 26: 14512-14524

    • Delfi M.
    • et al.

    Self-assembled peptide and protein nanostructures for anti-cancer therapy: targeted delivery, stimuli-responsive devices and immunotherapy.

    Nano Today. 2021; 38: 29

    • Hu Q.Q.
    • et al.

    DNA nanotechnology-enabled drug delivery systems.

    Chem. Rev. 2019; 119: 6459-6506

    • Yao C.
    • et al.

    A signal processor made from DNA assembly and upconversion nanoparticle for pharmacokinetic study.

    Nano Today. 2022; 42: 11

    • Yue S.
    • et al.

    Rolling circle replication for biosensing, bioimaging, and biomedicine.

    Trends Biotechnol. 2021; 39: 1160-1172

    • Li J.X.
    • et al.

    Circular nucleic acids: discovery, functions and applications.

    ChemBioChem. 2020; 21: 1547-1566

    • Kim E.
    • et al.

    Bioinspired fabrication of DNA-Inorganic hybrid composites using synthetic DNA.

    ACS Nano. 2019; 13: 2888-2900

    • Baker Y.R.
    • et al.

    Preparation and characterization of manganese, cobalt and zinc DNA nanoflowers with tuneable morphology, DNA content and size.

    Nucleic Acids Res. 2018; 46: 7495-7505

    • Ge J.
    • et al.

    Protein-inorganic hybrid nanoflowers.

    Nat. Nanotechnol. 2012; 7: 428-432

    • Park K.S.
    • et al.

    A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers.

    J. Mater. Chem. B. 2017; 5: 2231-2234

    • Lee S.W.
    • et al.

    Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects.

    J. Nanobiotechnol. 2015; 13: 10

    • Li M.F.
    • et al.

    Biomimetic copper-based inorganic-protein nanoflower assembly constructed on the nanoscale fibrous membrane with enhanced stability and durability.

    J. Phys. Chem. C. 2016; 120: 17348-17356

    • Wu T.
    • et al.

    Bioinspired DNA-inorganic hybrid nanoflowers combined with a personal glucose meter for onsite detection of miRNA.

    ACS Appl. Mater. Interfaces. 2018; 10: 42050-42057

    • Ma W.J.
    • et al.

    The biological applications of DNA nanomaterials: current challenges and future directions.

    Signal Transduct. Target. Ther. 2021; 6: 28

  • Time Stamp:

    More from Biotechnology Trends