Placing nanoplastics in the context of global plastic pollution

Source Node: 836534
  • 1.

    Boucher, J. & Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources (IUCN, 2017).

  • 2.

    Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    CAS  Article  Google Scholar 

  • 3.

    El Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2020).

    Article  Google Scholar 

  • 4.

    Sauvé, S. & Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 8, 15 (2014).

    Article  CAS  Google Scholar 

  • 5.

    Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 9, 667 (2018).

    Article  CAS  Google Scholar 

  • 6.

    Landon-Lane, M. Corporate social responsibility in marine plastic debris governance. Mar. Pollut. Bull. 127, 310–319 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Loges, B. & Jakobi, A. P. Not more than the sum of its parts: de-centered norm dynamics and the governance of plastics. Environ. Polit. 29, 1004–1023 (2019).

    Article  Google Scholar 

  • 8.

    Lau, W. W. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    CAS  Article  Google Scholar 

  • 9.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  CAS  Google Scholar 

  • 10.

    Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. & Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recycl. 151, 104459 (2019).

    Article  Google Scholar 

  • 11.

    Boucher, J., Dubois, C., Kounina, A. & Puydarrieux, P. Review of Plastic Footprint Methodologies (IUCN, 2019).

  • 12.

    Lambert, S. & Wagner, M. in Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 1–23 (Springer, 2018).

  • 13.

    Lambert, S. & Wagner, M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46, 6855–6871 (2017).

    CAS  Article  Google Scholar 

  • 14.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article  CAS  Google Scholar 

  • 15.

    Horn, O., Nalli, S., Cooper, D. & Nicell, J. Plasticizer metabolites in the environment. Water Res. 38, 3693–3698 (2004).

    CAS  Article  Google Scholar 

  • 16.

    Erler, C. & Novak, J. Bisphenol a exposure: human risk and health policy. J. Pediatr. Nurs. 25, 400–407 (2010).

    Article  Google Scholar 

  • 17.

    Wazir, U., Mokbel, K., Bisphenol, A. & Concise, A. Review of literature and a discussion of health and regulatory implications. In vivo 33, 1421–1423 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Dauvergne, P. The power of environmental norms: marine plastic pollution and the politics of microbeads. Environ. Polit. 27, 579–597 (2018).

    Article  Google Scholar 

  • 19.

    Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article  CAS  Google Scholar 

  • 21.

    Simon, B. What are the most significant aspects of supporting the circular economy in the plastic industry? Resour. Conserv. Recycl. 141, 299–300 (2019).

    Article  Google Scholar 

  • 22.

    Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment (GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2015).

  • 23.

    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947 (2015).

    CAS  Article  Google Scholar 

  • 24.

    Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Vianello, A., Jensen, R. L., Liu, L. & Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci. Rep. 9, 8670 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Zhang, Q. et al. Microplastic fallout in different indoor environments. Environ. Sci. Technol. 54, 6530–6539 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Shruti, V., Peréz-Guevara, F., Elizalde-Martínez, I. & Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—future research and environmental considerations. Sci. Total Environ. 726, 138580 (2020).

    CAS  Article  Google Scholar 

  • 29.

    Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Provencher, J. F. et al. Proceed with caution: the need to raise the publication bar for microplastics research. Sci. Total Environ. 748, 141426 (2020).

    CAS  Article  Google Scholar 

  • 32.

    Mintenig, S. M., Bauerlein, P., Koelmans, A. A., Dekker, S. C. & van Wezel, A. Closing the gap between small and smaller: towards a framework to analyse nano-and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Gigault, J., Pedrono, B., Maxit, B. & Ter Halle, A. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci. Nano 3, 346–350 (2016).

    CAS  Article  Google Scholar 

  • 34.

    González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).

    Article  Google Scholar 

  • 35.

    Koelmans, A. A. Besseling, E. & Shim, W. J. in Marine Anthropogenic Litter (eds Bergmann, M. et al.) 325–340 (Springer, 2015).

  • 36.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492 (2013).

    CAS  Article  Google Scholar 

  • 37.

    Alexy, P. et al. Managing the analytical challenges related to micro-and nanoplastics in the environment and food: filling the knowledge gaps. Food Addit. Contam. Part A 37, 1–10 (2020).

    CAS  Article  Google Scholar 

  • 38.

    Sendra, M., Sparaventi, E., Novoa, B. & Figueras, A. An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Sci. Total Environ. 753, 142024 (2020).

    Article  CAS  Google Scholar 

  • 39.

    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Envion. Sci. Technol. 52, 14480–14486 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Li, Z., Feng, C., Wu, Y. & Guo, X. Impacts of nanoplastics on bivalve: fluorescence tracing of organ accumulation, oxidative stress and damage. J. Hazard. Mater. 392, 122418 (2020).

    CAS  Article  Google Scholar 

  • 41.

    Bouwmeester, H., Hollman, P. C. & Peters, R. J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932–8947 (2015).

    CAS  Article  Google Scholar 

  • 42.

    Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Gigault, J. et al. Current opinion: what is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Maynard, A. D. Don’t define nanomaterials. Nature 475, 31 (2011).

    CAS  Article  Google Scholar 

  • 46.

    Stamm, H. Nanomaterials should be defined. Nature 476, 399 (2011).

    CAS  Article  Google Scholar 

  • 47.

    Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Toumey, C. The philosopher and the engineer. Nat. Nanotechnol. 11, 306–307 (2016).

    CAS  Article  Google Scholar 

  • 49.

    Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009).

    CAS  Article  Google Scholar 

  • 50.

    Zhang, H. et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–4368 (2012).

    CAS  Article  Google Scholar 

  • 51.

    Burello, E. & Worth, A. P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5, 228–235 (2011).

    CAS  Article  Google Scholar 

  • 52.

    Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326 (2016).

    CAS  Article  Google Scholar 

  • 53.

    Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—but should microplastics be considered POPs themselves? Integr. Environ. Assess. Manag. 13, 460–465 (2017).

    CAS  Article  Google Scholar 

  • 54.

    Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    CAS  Article  Google Scholar 

  • 55.

    Docter, D. et al. The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem. Soc. Rev. 44, 6094–6121 (2015).

    CAS  Article  Google Scholar 

  • 56.

    Freland, S., Kaegi, R., Hufenus, R. & Mitrano, D. M. Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics. Water Res 182, 115860 (2020).

    Article  CAS  Google Scholar 

  • 57.

    Keller, A. S., Jimenez-Martinez, J. & Mitrano, D. M. Transport of nano-and microplastic through unsaturated porous media from sewage sludge application. Environ. Sci. Technol. 54, 911–920 (2019).

    Article  CAS  Google Scholar 

  • 58.

    Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    CAS  Article  Google Scholar 

  • 59.

    McNeil, S. E. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 264–271 (2009).

    CAS  Article  Google Scholar 

  • 60.

    Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5, 10868–10876 (2013).

    CAS  Article  Google Scholar 

  • 61.

    Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7, 2 (2010).

    Article  CAS  Google Scholar 

  • 62.

    Donaldson, K., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5 (2010).

    Article  CAS  Google Scholar 

  • 63.

    Geiser, M. et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560 (2005).

    Article  Google Scholar 

  • 64.

    Wick, P. et al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432–436 (2010).

    CAS  Article  Google Scholar 

  • 65.

    Mastrangelo, G. et al. Lung cancer risk in workers exposed to poly (vinyl chloride) dust: a nested case-referent study. Occup. Environ. Med. 60, 423–428 (2003).

    CAS  Article  Google Scholar 

  • 66.

    Rothen-Rutishauser, B., Blank, F., Mühlfeld, C. & Gehr, P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin. Drug Metab. Toxicol. 4, 1075–1089 (2008).

    CAS  Article  Google Scholar 

  • 67.

    Borm, P. J. & Kreyling, W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J. Nanosci. Nanotechnol. 4, 521–531 (2004).

    CAS  Article  Google Scholar 

  • 68.

    Hesler, M. et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. In Vitro 61, 104610 (2019).

    CAS  Article  Google Scholar 

  • 69.

    Donaldson, K., Stone, V., Tran, C., Kreyling, W. & Borm, P. J. Nanotoxicology 61, 727–728 (2004).

    CAS  Google Scholar 

  • 70.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    CAS  Article  Google Scholar 

  • 71.

    Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS  Article  Google Scholar 

  • 72.

    Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article  CAS  Google Scholar 

  • 73.

    Zhang, M. et al. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 6, 709–735 (2019).

    CAS  Article  Google Scholar 

  • 74.

    Hildebrandt, L., Mitrano, D. M., Zimmermann, T. & Pröfrock, D. A nanoplastic sampling and enrichment approach by continuous flow centrifugation. Front. Environ. Sci. 8, 89 (2020).

    Google Scholar 

  • 75.

    Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

    Article  Google Scholar 

  • 76.

    Hochell, M. F., Aruguete, D. M., Kim, B. & Madden, A. S. in Nature’s Nanostructures 1–42 (Pan Stanford, 2012).

  • 77.

    Nanotechnologies—Terminology, I., Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate (International Organization for Standardization, 2008).

  • 78.

    Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3, 155–158 (2006).

    CAS  Article  Google Scholar 

  • 79.

    Yang, Y. et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ. Sci. Technol. 48, 6391–6400 (2014).

    CAS  Article  Google Scholar 

  • 80.

    Stark, W. J., Stoessel, P. R., Wohlleben, W. & Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 44, 5793–5805 (2015).

    CAS  Article  Google Scholar 

  • 81.

    Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147 (2015).

    CAS  Article  Google Scholar 

  • 82.

    Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: engineered and natural nanoparticles in the environment—release, behavior, and fate. Angew. Chem. Int. Ed. 53, 12398–12419 (2014).

    CAS  Google Scholar 

  • 83.

    Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    CAS  Article  Google Scholar 

  • 84.

    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    CAS  Article  Google Scholar 

  • 85.

    Pico, Y., Alfarhan, A. & Barcelo, D. Nano-and microplastic analysis: focus on their occurrence in freshwater ecosystems and remediation technologies. Trends Anal. Chem. 113, 409–425 (2019).

    CAS  Article  Google Scholar 

  • 86.

    Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062 (2004).

    Article  CAS  Google Scholar 

  • 87.

    Yazdi, A. S. et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl Acad. Sci. USA 107, 19449–19454 (2010).

    CAS  Article  Google Scholar 

  • 88.

    Horngren, T. & Kolodziejczyk, B. Microplastic and nanoplastic pollution threatens our environment. How should we respond? World Economic Forum https://www.weforum.org/agenda/2018/10/micro-and-nano-plastics-the-next-global-epidemics/ (2018).

  • 89.

    Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Global Chall. 4, 1900022 (2018).

    Article  Google Scholar 

  • 90.

    Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Exposure and possible risks of engineered nanomaterials in the environment—current knowledge and directions for the future. Rev. Geophys. 58, e2020RG000710 (2020).

    Article  Google Scholar 

  • 91.

    Jesus, S. et al. Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front. Bioeng. Biotechnol. 7, 261 (2019).

    Article  Google Scholar 

  • 92.

    Hauser, M., Li, G. & Nowack, B. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J. Nanobiotechnol. 17, 56 (2019).

    Article  Google Scholar 

  • 93.

    Reidy, B., Haase, A., Luch, A., Dawson, K. A. & Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6, 2295–2350 (2013).

    CAS  Article  Google Scholar 

  • 94.

    Maynard, A. D. & Aitken, R. J. ‘Safe handling of nanotechnology’ ten years on. Nat. Nanotechnol. 11, 998–1000 (2016).

    CAS  Article  Google Scholar 

  • 95.

    Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350, 388–389 (2015).

    CAS  Article  Google Scholar 

  • 96.

    Milosevic, A., Romeo, D. & Wick, P. Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology. Small 16, 1907650 (2020).

    CAS  Article  Google Scholar 

  • 97.

    Stone, V. et al. ITS-NANO—prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part. Fibre Toxicol. 11, 9 (2014).

    Article  CAS  Google Scholar 

  • 98.

    Grieger, K. et al. Best practices from nano-risk analysis relevant for other emerging technologies. Nat. Nanotechnol. 14, 998–1001 (2019).

    CAS  Article  Google Scholar 

  • 99.

    Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article  CAS  Google Scholar 

  • 100.

    Hristozov, D. et al. Frameworks and tools for risk assessment of manufactured nanomaterials. Environ. Int. 95, 36–53 (2016).

    CAS  Article  Google Scholar 

  • 101.

    Romeo, D., Salieri, B., Hischier, R., Nowack, B. & Wick, P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ. Int. 137, 105505 (2020).

    CAS  Article  Google Scholar 

  • 102.

    Salieri, B. et al. Relative potency factor approach enables the use of in vitro information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment. Nanotoxicology 14, 275–286 (2020).

    CAS  Article  Google Scholar 

  • 103.

    Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    CAS  Article  Google Scholar 

  • 104.

    Fox-Glassman, K. T. & Weber, E. U. What makes risk acceptable? Revisiting the 1978 psychological dimensions of perceptions of technological risks. J. Math. Psychol. 75, 157–169 (2016).

    Article  Google Scholar 

  • 105.

    Leslie, H. & Depledge, M. Where is the evidence that human exposure to microplastics is safe? Environ. Int. 142, 105807 (2020).

    CAS  Article  Google Scholar 

  • 106.

    Wardman, T., Koelmans, A. A., Whyte, J. & Pahl, S. Communicating the absence of evidence for microplastics risk: balancing sensation and reflection. Environ. Int. 150, 106116 (2020).

    Article  Google Scholar 

  • 107.

    Gouin, T. et al. Clarifying the absence of evidence regarding human health risks to microplastic particles in drinking-water: high quality robust data wanted. Environ. Int. 150, 106141 (2020).

    Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00888-2

    Time Stamp:

    More from Nature Nanotechnology