Quantum steering for more precise measurements

Source Node: 827287

Home > Press > Quantum steering for more precise measurements

Einstein-Podolski-Rosen correlations can be used for precision measurements. (Image: Jurik Peter, Shutterstock)
Einstein-Podolski-Rosen correlations can be used for precision measurements. (Image: Jurik Peter, Shutterstock)

Abstract:
Quantum systems consisting of several particles can be used to measure magnetic or electric fields more precisely. A young physicist at the University of Basel has now proposed a new scheme for such measurements that uses a particular kind of correlation between quantum particles.

Quantum steering for more precise measurements


Basel, Switzerland | Posted on April 23rd, 2021

In quantum information, the fictitious agents Alice and Bob are often used to illustrate complex communication tasks. In one such process, Alice can use entangled quantum particles such as photons to transmit or “teleport” a quantum state – unknown even to herself – to Bob, something that is not feasible using traditional communications.

However, it has been unclear whether the team Alice-Bob can use similar quantum states for other things besides communication. A young physicist at the University of Basel has now shown how particular types of quantum states can be used to perform measurements with higher precision than quantum physics would ordinarily allow. The results have been published in the scientific journal Nature Communications.

Quantum steering at a distance

Together with researchers in Great Britain and France, Dr. Matteo Fadel, who works at the Physics Department of the University of Basel, has thought about how high-precision measurement tasks can be tackled with the help of so-called quantum steering.

Quantum steering describes the fact that in certain quantum states of systems consisting of two particles, a measurement on the first particle allows one to make more precise predictions about possible measurement results on the second particle than quantum mechanics would allow if only the measurement on the second particle had been made. It is just as if the measurement on the first particle had “steered” the state of the second one.

This phenomenon is also known as the EPR paradox, named after Albert Einstein, Boris Podolsky and Nathan Rosen, who first described it in 1935. What is remarkable about it is that it works even if the particles are far apart because they are quantum-mechanically ?entangled? and can feel each other at a distance. This is also what allows Alice to transmit her quantum state to Bob in quantum teleportation.

“For quantum steering, the particles have to be entangled with each other in a very particular fashion,” Fadel explains. “We were interested in understanding whether this could be used for making better measurements.” The measurement procedure he proposes consists of Alice’s performing a measurement on her particle and transmitting the result to Bob.

Thanks to quantum steering, Bob can then adjust his measurement apparatus such that the measurement error on his particle is smaller than it would have been without Alice’s information. In this way, Bob can measure, for instance, magnetic or electric fields acting on his particles with high precision.

Systematic study of steering-enhanced measurements

The study of Fadel and his colleagues now makes it possible to systematically study and demonstrate the usefulness of quantum steering for metrological applications. “The idea for this arose from an experiment we already did in 2018 in the laboratory of Professor Philipp Treutlein at the University of Basel,” says Fadel.

“In that experiment, we were able to measure quantum steering for the first time between two clouds containing hundreds of cold atoms each. After that, we asked ourselves whether it might be possible to do something useful with that.” In his work, Fadel has now created a solid mathematical basis for realizing real-life measurement applications that use quantum steering as a resource.

“In a few simple cases, we already knew that there was a connection between the EPR paradox and precision measurements,” Treutlein says. “But now we have a general theoretical framework, based on which we can also develop new strategies for quantum metrology.” Researchers are already working on demonstrating Fadel’s ideas experimentally. In the future, this could result in new quantum-enhanced measurement devices.

####

For more information, please click here

Contacts:
Reto Caluori
41-612-072-495

@UniBasel_en

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

News and information

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Physics

Experiments cast doubts on the existence of quantum spin liquids April 21st, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

D-Wave demonstrates performance advantage in quantum simulation of exotic magnetism: Fully-programmable annealing quantum computer demonstrates 3 million times speed-up over classical CPU in a practical application February 19th, 2021

Quantum communication

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Possible Futures

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Discoveries

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Announcements

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Quantum nanoscience

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Source: http://www.nanotech-now.com/news.cgi?story_id=56661

Time Stamp:

More from Nanotechnology Now