Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer

Source Node: 845319
  • 1.

    Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  Article  Google Scholar 

  • 3.

    Lee, S. W. et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev. Cell 50, 381–392.e5 (2019).

    CAS  Article  Google Scholar 

  • 4.

    Yao, W. et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature 568, 410–414 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Yardley, D. A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Release 170, 365–372 (2013).

    CAS  Article  Google Scholar 

  • 6.

    Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Barkat, M. A., Beg, S., Pottoo, F. H. & Ahmad, F. J. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomed. 14, 1323–1341 (2019).

    Article  CAS  Google Scholar 

  • 8.

    Havel, H. A. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. AAPS J. 18, 1351–1353 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Socinski, M. A. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J. Clin. Oncol. 30, 2055–2062 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  Google Scholar 

  • 11.

    Waters, A. M. & Der, C. J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect. Med. 8, a031435 (2018).

  • 12.

    Tempero, M. A. et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma. J. Clin. Oncol. 37:15, 4000 (2019).

    Article  Google Scholar 

  • 13.

    Desai, N., Trieu, V., Damascelli, B. & Soon-Shiong, P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl. Oncol. 2, 59–64 (2009).

    Article  Google Scholar 

  • 14.

    Hidalgo, M. et al. SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT trial. Clin. Cancer Res. 21, 4811–4818 (2015).

    CAS  Article  Google Scholar 

  • 15.

    Neesse, A. et al. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut 63, 974–983 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Cullis, J. et al. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182–190 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  CAS  Google Scholar 

  • 18.

    DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    CAS  Article  Google Scholar 

  • 19.

    Cuccarese, M. F. et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 8, 14293 (2017).

    CAS  Article  Google Scholar 

  • 20.

    Sparreboom, A. et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood. Cancer Res. 59, 1454–1457 (1999).

    CAS  Google Scholar 

  • 21.

    Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    CAS  Article  Google Scholar 

  • 22.

    Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    CAS  Article  Google Scholar 

  • 24.

    Kim, H. Y. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano 12, 12015–12029 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Redelman-Sidi, G. et al. The canonical Wnt pathway drives macropinocytosis in cancer. Cancer Res. 78, 4658–4670 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Langer, C. J. et al. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 32, 2059–2066 (2014).

    CAS  Article  Google Scholar 

  • 27.

    Ajona, D. et al. Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade. Nat. Cancer 1, 75–85 (2020).

    Article  Google Scholar 

  • 28.

    Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Disco. 8, 866–883 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Ning, J., Xi, G. & Clemmons, D. R. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143–3154 (2011).

    CAS  Article  Google Scholar 

  • 31.

    Tosca, L., Chabrolle, C., Crochet, S., Tesseraud, S. & Dupont, J. IGF-1 receptor signaling pathways and effects of AMPK activation on IGF-1-induced progesterone secretion in hen granulosa cells. Domest. Anim. Endocrinol. 34, 204–216 (2008).

    CAS  Article  Google Scholar 

  • 32.

    Wagle, M. C. et al. A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types. NPJ Precis Oncol. 2, 7 (2018).

    Article  CAS  Google Scholar 

  • 33.

    Wan, L. et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol. Cell 69, 279–291.e5 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Cui, M. et al. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv. Health. Mater. 2, 1236–1245 (2013).

    CAS  Article  Google Scholar 

  • 35.

    Zaro, J. L. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J. 17, 83–92 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Bush, M. A. et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes. Metab. 11, 498–505 (2009).

    CAS  Article  Google Scholar 

  • 37.

    Suo, Z. et al. Investigation on the interaction of dabrafenib with human serum albumin using combined experiment and molecular dynamics simulation: exploring the binding mechanism, esterase-like activity, and antioxidant activity. Mol. Pharm. 15, 5637–5645 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Scaltriti, M. & Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res. 12, 5268–5272 (2006).

    CAS  Article  Google Scholar 

  • 39.

    Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  Article  Google Scholar 

  • 40.

    Dinulescu, D. M. et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 11, 63–70 (2005).

    CAS  Article  Google Scholar 

  • 41.

    McAuliffe, S. M. et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc. Natl Acad. Sci. USA 109, E2939–E2948 (2012).

    CAS  Article  Google Scholar 

  • 42.

    McFadden, D. G. et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl Acad. Sci. USA 111, E1600–E1609 (2014).

    CAS  Article  Google Scholar 

  • 43.

    Vanden Borre, P. et al. Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 5, 3996–4010 (2014).

    Article  Google Scholar 

  • 44.

    Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Vanden Borre, P. et al. The next generation of orthotopic thyroid cancer models: immunocompetent orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid carcinoma. Thyroid 24, 705–714 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Girnita, A. et al. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 64, 236–242 (2004).

    CAS  Article  Google Scholar 

  • 47.

    Mulvihill, M. J. et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med. Chem. 1, 1153–1171 (2009).

    CAS  Article  Google Scholar 

  • 48.

    Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    CAS  Article  Google Scholar 

  • 49.

    Pineda, J. J. et al. Site occupancy calibration of taxane pharmacology in live cells and tissues. Proc. Natl Acad. Sci. USA 115, E11406–E11414 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Devaraj, N. K., Keliher, E. J., Thurber, G. M., Nahrendorf, M. & Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem. 20, 397–401 (2009).

    CAS  Article  Google Scholar 

  • 51.

    Josephson, L., Tung, C. H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 10, 186–191 (1999).

    CAS  Article  Google Scholar 

  • 52.

    Langer, K. et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257, 169–180 (2003).

    CAS  Article  Google Scholar 

  • 53.

    Langer, K. et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 347, 109–117 (2008).

    CAS  Article  Google Scholar 

  • 54.

    Tsubaki, M. et al. Trametinib suppresses chemotherapy-induced cold and mechanical allodynia via inhibition of extracellular-regulated protein kinase 1/2 activation. Am. J. Cancer Res. 8, 1239–1248 (2018).

    CAS  Google Scholar 

  • 55.

    Menu, E. et al. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107, 655–660 (2006).

    CAS  Article  Google Scholar 

  • 56.

    Xu, W., Tamura, T. & Takatsu, K. CpG ODN mediated prevention from ovalbumin-induced anaphylaxis in mouse through B cell pathway. Int. Immunopharmacol. 8, 351–361 (2008).

    CAS  Article  Google Scholar 

  • 57.

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  Article  Google Scholar 

  • 58.

    Ng, T. S. C. et al. Detecting immune response to therapies targeting PDL1 and BRAF using ferumoxytol MRI and Macrin in anaplastic thyroid cancer. Radiology 298, 123–132 (2020).

    Article  Google Scholar 

  • 59.

    Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015).

    Article  Google Scholar 

  • 60.

    Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

  • Source: https://www.nature.com/articles/s41565-021-00897-1

    Time Stamp:

    More from Nature Nanotechnology