Predlog testa izboljšanega zapletanja za lokalno kršitev Lorentzove simetrije prek spinor atomov

Izvorno vozlišče: 1755471

Min Zhuang1, Jiahao Huang2,3in Chaohong Lee1,2,3

1Fakulteta za fiziko in optoelektronsko tehniko, Univerza Shenzhen, Shenzhen 518060, Kitajska
2Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, Kitajska
3Državni ključni laboratorij za optoelektronske materiale in tehnologije, Univerza Sun Yat-Sen (Guangzhou Campus), Guangzhou 510275, Kitajska

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Invariantnost pod Lorentzovimi transformacijami je temeljna tako za standardni model kot splošno teorijo relativnosti. Preizkušanje kršitve Lorentzove simetrije (LSV) prek atomskih sistemov pritegne veliko zanimanja tako v teoriji kot v eksperimentu. V več predlogih preskusov so učinki kršitve LSV opisani kot lokalna interakcija in ustrezna natančnost preskusa lahko asimptotično doseže Heisenbergovo mejo prek naraščajoče kvantne Fisherjeve informacije (QFI), vendar omejena ločljivost skupnih opazovanih preprečuje zaznavanje velikega QFI. Tukaj predlagamo večmodno kvantno interferometrijo z več telesi za testiranje parametra LSV $kappa$ preko skupine spinor atomov. Z uporabo večmodnega GHZ stanja $N$-atoma lahko natančnost preskusa doseže Heisenbergovo mejo $Delta kappa propto 1/(F^2N)$ z dolžino vrtenja $F$ in številom atoma $N$. Najdemo realistično opazovanje (tj. praktični merilni postopek), da dosežemo končno natančnost in analiziramo test LSV prek eksperimentalno dostopne trimodne interferometrije z Bose kondenziranimi spin-$1$ atomi na primer. Z izbiro ustreznih vhodnih stanj in operacije enotne rekombinacije je mogoče parameter LSV $kappa$ izluščiti z izvedljivim merjenjem populacije. Zlasti lahko merilna natančnost parametra LSV $kappa$ preseže standardno kvantno mejo in se celo približa Heisenbergovi meji prek dinamike vrtilnega mešanja ali vožnje skozi kvantne fazne prehode. Poleg tega je shema robustna proti neadiabatnemu učinku in zaznavnemu šumu. Naša testna shema lahko odpre izvedljiv način za drastično izboljšanje testov LSV z atomskimi sistemi in zagotovi alternativno uporabo zapletenih stanj z več delci.

Invariantnost pod Lorentzovimi transformacijami je temeljna tako za standardni model kot splošno teorijo relativnosti. Preizkušanje kršitve Lorentzove simetrije (LSV) prek atomskih sistemov pritegne veliko zanimanja tako v teoriji kot v eksperimentu. Tukaj predlagamo večmodno kvantno interferometrijo z več telesi za testiranje parametra LSV prek niza spinor atomov. Z uporabo večmodnega stanja N-atoma GHZ lahko natančnost preskusa doseže Heisenbergovo mejo. Najdemo realistično opazovanje (tj. praktični merilni postopek) za doseganje končne natančnosti in analizo LSV testa prek eksperimentalno dostopne trimodne interferometrije z Bose kondenziranimi atomi spin-1 na primer. Z izbiro ustreznih vhodnih stanj in operacije enotne rekombinacije je mogoče parameter LSV ekstrahirati z izvedljivim merjenjem populacije. Zlasti lahko merilna natančnost parametra LSV preseže standardno kvantno mejo in se celo približa Heisenbergovi meji z dinamiko vrtilnega mešanja ali vožnjo skozi kvantne fazne prehode. Poleg tega je shema robustna proti neadiabatnemu učinku in zaznavnemu šumu. Naša testna shema lahko odpre izvedljiv način za drastično izboljšanje testov LSV z atomskimi sistemi in zagotovi alternativno uporabo zapletenih stanj z več delci.

► BibTeX podatki

► Reference

[1] CW Misner, KS Thorne in JA Wheeler, Gravitacija (Freeman, San Francisco, 1970).
https://​/​doi.org/​10.1002/​asna.19752960110

[2] D. Mattingly, Living Rev. Relativity 8, 5 (2005).
https: / / doi.org/ 10.12942 / lrr-2005-5

[3] S. Liberati in L. Maccione, Annu. Rev. Nucl. del Sci. 59, 245 (2009).
https://​/​doi.org/​10.1146/​annurev.nucl.010909.083640

[4] S. Liberati, Razred. Quantum Gravity 30, 133001 (2013).
https:/​/​doi.org/​10.1088/​0264-9381/​30/​13/​133001

[5] JD Tasson, Rep. Prog. Phys. 77, 062901 (2014).
https:/​/​doi.org/​10.1088/​0034-4885/​77/​6/​062901

[6] M. Pospelov, Y. Shang, Phys. Rev. D 85, 105001 (2012).
https: / / doi.org/ 10.1103 / PhysRevD.85.105001

[7] VA Kostelecký in N. Russell, Rev. Mod. Phys. 83, 11 (2011).
https: / / doi.org/ 10.1103 / RevModPhys.83.11

[8] VA Kostelecký in R. Potting, Phys. Rev. D 51, 3923 (1995).
https: / / doi.org/ 10.1103 / PhysRevD.51.3923

[9] D. Colladay in VA Kostelecký, Phys. Rev. D 55, 6760 (1997).
https: / / doi.org/ 10.1103 / PhysRevD.55.6760

[10] D. Colladay in VA Kostelecký, Phys. Rev. D 58, 116002 (1998).
https: / / doi.org/ 10.1103 / PhysRevD.58.116002

[11] VA Kostelecký, Phys. Rev. D 69, 105009 (2004).
https: / / doi.org/ 10.1103 / PhysRevD.69.105009

[12] VA Kostelecký in JD Tasson, Phys. Rev. D 83, 016013 (2011).
https: / / doi.org/ 10.1103 / PhysRevD.83.016013

[13] P. Hořava, Phys. Rev. D 79, 084008 (2009).
https: / / doi.org/ 10.1103 / PhysRevD.79.084008

[14] VA Kostelecký in S. Samuel, Phys. Rev. D 39, 683 (1989).
https: / / doi.org/ 10.1103 / PhysRevD.39.683

[15] R. Gambini in J. Pullin, Phys. Rev. D 59, 124021 (1999).
https: / / doi.org/ 10.1103 / PhysRevD.59.124021

[16] SG Nibbelink, M. Pospelov, Phys. Rev. Lett. 94, 081601 (2005).
https: / / doi.org/ 10.1103 / PhysRevLett.94.081601

[17] MR Douglas in NA Nekrasov, Rev. Mod. Phys. 73, 977 (2001).
https: / / doi.org/ 10.1103 / RevModPhys.73.977

[18] O. Bertolami, R. Lehnert, R. Potting in A. Ribeiro, Phys. Rev. D 69, 083513 (2004).
https: / / doi.org/ 10.1103 / PhysRevD.69.083513

[19] RC Myers in M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003).
https: / / doi.org/ 10.1103 / PhysRevLett.90.211601

[20] MS Safronova, D. Budker, D. DeMille, DFJ Kimball, A. Derevianko in CW Clark, Rev. Mod. Phys. 90, 025008 (2018).
https: / / doi.org/ 10.1103 / RevModPhys.90.025008

[21] MA Hohensee, N. Leefer, D. Budker, C. Harabati, VA Dzuba in VV Flambaum, Phys. Rev. Lett. 111, 050401 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.111.050401

[22] T. Pruttivarasin, M. Ramm, SG Porsev, I. Tupitsyn, MS Safronova, MA Hohensee in H. Häffner, Nature (London) 517, 592 (2015).
https: / / doi.org/ 10.1038 / nature14091

[23] VA Dzuba, VV Flambaum, MS Safronova, SG Porsev, T. Pruttivarasin, MA Hohensee in H. Häffner, Nat. Phys 12, 465 (2016).
https: / / doi.org/ 10.1038 / nphys3610

[24] R. Shaniv, R. Ozeri, MS Safronova, SG Porsev, VA Dzuba, VV Flambaum in H. Häffner, Phys. Rev. Lett. 120, 103202 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.120.103202

[25] VA Kostelecký, C. Lane, Phys. Rev. D 60, 116010 (1999).
https: / / doi.org/ 10.1103 / PhysRevD.60.116010

[26] L. Li, X. Li, B. Zhang in L. You, Phys. Rev. A 99, 042118 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.042118

[27] VA Kostelecký in CD Lane, J. Math. Phys. (NY) 40, 6245 (1999).
https: / / doi.org/ 10.1063 / 1.533090

[28] JJ Bollinger, WM Itano in DJ Wineland, Phys. Rev. A 54, R4649 (1996).
https: / / doi.org/ 10.1103 / PhysRevA.54.R4649

[29] T. Monz, P. Schindler, JT Barreiro, M. Chwalla, D. Nigg, WA Coish, M. Harlander, W. Hänsel, M. Hennrich in R. Blat, Phys. Rev. Lett. 106, 130506 (2011).
https: / / doi.org/ 10.1103 / PhysRevLett.106.130506

[30] J. Huang, X. Qin, H. Zhong, Y. Ke in C. Lee, Sci. Rep. 5, 17894 (2015).
https: / / doi.org/ 10.1038 / srep17894

[31] C. Lee, Phys. Rev. Lett. 97, 150402 (2006).
https: / / doi.org/ 10.1103 / PhysRevLett.97.150402

[32] C. Lee, Phys. Rev. Lett. 102, 070401 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.102.070401

[33] SD Huver, CF Wildfeuer in JP Dowling, Phys. Rev. A 78, 063828 (2008).
https: / / doi.org/ 10.1103 / PhysRevA.78.063828

[34] C. Lee, J. Huang, H. Deng, H. Dai in J. Xu, spredaj. Phys. 7, 109 (2012).
https:/​/​doi.org/​10.1007/​s11467-011-0228-6

[35] Y. Kawaguchia, M. Ueda, Phys. Rep. 520, 253 (2012).
https: / / doi.org/ 10.1016 / j.physrep.2012.07.005

[36] M. Zhuang, J. Huang in C. Lee, Phys. Rev. A. 98, 033603 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.98.033603

[37] SC Burd, R. Srinivas, JJ Bollinger, AC Wilson, DJ Wineland, D. Leibfried, DH Slichter, DTC Allcock, Science 364, 1163 (2019).
https: / / doi.org/ 10.1126 / science.aaw2884

[38] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, RJ Lewis-Swan, KV Kheruntsyan in MK Oberthaler, Phys. Rev. Lett. 117, 013001 (2016).
https: / / doi.org/ 10.1103 / PhysRevLett.117.013001

[39] O. Hosten, R. Krishnakumar, NJ Engelsen, MA Kasevich, Science 352, 6293 (2016).
https: / / doi.org/ 10.1126 / science.aaf3397

[40] SS Mirkhalaf, SP Nolan in SA Haine, Phys. Rev. A 97, 053618 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.97.053618

[41] F. Fröwis, P. Sekatski in W. Dür, Phys. Rev. Lett. 116, 090801 (2016).
https: / / doi.org/ 10.1103 / PhysRevLett.116.090801

[42] SS Szigeti, RJ Lewis-Swan in SA Haine, Phys. Rev. Lett. 118, 150401 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.118.150401

[43] J. Huang, M. Zhuang, B. Lu, Y. Ke in C. Lee, Phys. Rev. A 98, 012129 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.98.012129

[44] J. Huang, M. Zhuang in C. Lee, Phys. Rev. A 97, 032116 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.97.032116

[45] F. Anders, L. Pezzè, A. Smerzi in C. Klempt, Phys. Rev. A 97, 043813 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.97.043813

[46] T. Jacobson, arXiv:0801.1547 (2007).
https: / / doi.org/ 10.1142 / 9789812779519_0014
arXiv: 0801.1547

[47] D. Blas, O. Pujolàs in S. Sibiryakov, Phys. Rev. Lett 104, 181302 (2010).
https: / / doi.org/ 10.1103 / PhysRevLett.104.181302

[48] AA Ungar, Simetrija 12, 1259 (2020).
https://​/​doi.org/​10.3390/​sym12081259

[49] TP Heavner, SR Jefferts, EA Donley, JH Shirley in TE Parker, Metrologia 42, 411 (2005).
https:/​/​doi.org/​10.1088/​0026-1394/​42/​5/​012

[50] S. Weyers, V. Gerginov, N. Nemitz, R. Li in K. Gibble, Metrologia 49, 82 (2012).
https:/​/​doi.org/​10.1088/​0026-1394/​49/​1/​012

[51] B. Wu, ZY Wang, B. Cheng, QY Wang, AP Xu in Q. Lin, J. Phys. Netopir. Mol. Opt. Phys. 47, 015001 (2014).
https:/​/​doi.org/​10.1088/​0953-4075/​47/​1/​015001

[52] EB Alexandrov, Phys. Scr., 2003, 27 (2003).
https: / / doi.org/ 10.1238 / Physica.Topical.105a00027

[53] SJ Seltzer, PJ Meares in MV Romalis, Phys. Rev. A 75, 051407(R) (2007).
https: / / doi.org/ 10.1103 / PhysRevA.75.051407

[54] K. Jensen, VM Acosta, JM Higbie, MP Ledbetter, SM Rochester in D. Budker, Phys. Rev. A 79, 023406 (2009).
https: / / doi.org/ 10.1103 / PhysRevA.79.023406

[55] G. Tóth in I. Apellaniz, J. Phys. O: Matematika. Teor. 47, 424006 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424006

[56] R. Demkowicz-Dobrzański, M. Jarzyna in J. Kolodyński, Napredek v optiki, uredil E. Wolf (Elsevier, letnik 60, 2015).
https: / / doi.org/ 10.1016 / bs.po.2015.02.003

[57] L. Pezzé in A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.102.100401

[58] P. Hyllus, L. Pezzé in A. Smerzi, Phys. Rev. Lett. 105, 120501 (2010).
https: / / doi.org/ 10.1103 / PhysRevLett.105.120501

[59] J. Huang, S. Wu, H. Zhong in C. Lee, Annu. Rev. Cold At. Mol. 2, 365 (2014).
https: / / doi.org/ 10.1142 / 9789814590174_0007

[60] SL Braunstein in CM Caves, Phys. Rev. Lett. 72, 3439 (1994).
https: / / doi.org/ 10.1103 / PhysRevLett.72.3439

[61] V. Giovannetti, S. Lloyd in L. Maccone, Science 306, 1330 (2004).
https: / / doi.org/ 10.1126 / znanost.1104149

[62] V. Giovannetti, S. Lloyd in L. Maccone, Nature Photon 5, 222 (2011).
https: / / doi.org/ 10.1038 / nphoton.2011.35

[63] JG Bohnet, BC Sawyer, JW Britton, MLWall, AM Rey, M. Foss-Feig in JJ Bollinger, Science 352, 1297 (2016).
https: / / doi.org/ 10.1126 / science.aad9958

[64] Z. Zhang in L.-M. Duan, Phys. Rev. Lett. 111, 180401 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.111.180401

[65] Y. Zou, L. Wu, Q. Liu, X. Luo, S. Guo, J. Cao, M. Tey in L. You, Proc Natl Acad Sci USA 201, 7151 (2018).
https: / / doi.org/ 10.1073 / pnas.1715105115

[66] X. Luo, Y. Zou, L. Wu, Q. Liu, M. Han, M. Tey in L. You, Science 355, 620 (2017).
https: / / doi.org/ 10.1126 / science.aag1106

[67] S. Guo, F. Chen, Q. Liu, M. Xue, J. Chen, J. Cao, T. Mao, MK Tey in L. You, Phys. Rev. Lett. 126, 060401 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.126.060401

[68] DM Stamper-Kurn in M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
https: / / doi.org/ 10.1103 / RevModPhys.85.1191

[69] M. Gabbrielli, L. Pezzè in A. Smerzi, Phys. Rev. Lett. 115, 163002 (2015).
https: / / doi.org/ 10.1103 / PhysRevLett.115.163002

[70] T. Ho, Phys. Rev. Lett. 81, 742 (1998).
https: / / doi.org/ 10.1103 / PhysRevLett.81.742

[71] T. Ohmi in K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
https: / / doi.org/ 10.1143 / JPSJ.67.1822

[72] E. Davis, G. Bentsen in M. Schleier-Smith, Phys. Rev. Lett. 116, 053601 (2016).
https: / / doi.org/ 10.1103 / PhysRevLett.116.053601

[73] T. Macrì, A. Smerzi in L. Pezzè, Phys. Rev. A 94, 010102 (2016).
https: / / doi.org/ 10.1103 / PhysRevA.94.010102

[74] SP Nolan, SS Szigeti in SA Haine, Phys. Rev. Lett. 119, 193601 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.193601

[75] L. Pezzé in A. Smerzi, Phys. Rev. Lett. 110, 163604 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.110.163604

[76] M. Zhuang, J. Huang in C. Lee, Phys. Rev. Uporabljeno 16, 064056 (2021).
https: / / doi.org/ 10.1103 / PhysRevApplied.16.064056

[77] H. Xing, A. Wang, QS Tan, W. Zhang in S. Yi, Phys. Rev. A 93, 043615 (2016).
https: / / doi.org/ 10.1103 / PhysRevA.93.043615

Navedel

Pridobitve ni bilo mogoče Crossref citirani podatki med zadnjim poskusom 2022-11-14 13:13:07: ni bilo mogoče pridobiti navajanih podatkov za 10.22331 / q-2022-11-14-859 od podjetja Crossref. To je normalno, če je bil DOI registriran pred kratkim. Na SAO / NASA ADS ni bilo najdenih podatkov o navajanju del (zadnji poskus 2022-11-14 13:13:08).

Časovni žig:

Več od Quantum Journal