Vloga koherence snovi pri prepletanju zaradi gravitacije

Izvorno vozlišče: 1721724

Akira Matsumura

Oddelek za fiziko, Univerza Kyushu, Fukuoka, 819-0395, Japonska

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Raziskujemo kvantno naravo gravitacije v smislu koherence kvantnih objektov. Kot osnovno nastavitev upoštevamo dva gravitacijska objekta v superpozicijskem stanju dveh poti. Razvoj objektov opisuje popolnoma pozitiven zemljevid, ki ohranja sledi (CPTP) z lastnostjo ohranjanja populacije. Ta lastnost odraža, da je verjetnost, da so predmeti na vsaki poti, ohranjena. Za kvantificiranje koherence objektov uporabljamo $ell_1$-normo koherence. V tem članku je kvantna narava gravitacije označena z zemljevidom zapletanja, ki je zemljevid CPTP z zmožnostjo ustvarjanja zapletanja. Pričo preslikave zapletanja uvedemo kot opazovalko, da preizkusimo, ali se dana preslikava zapleta. Pokažemo, da vsakič, ko imajo gravitacijski objekti na začetku končno količino $ell_1$-norme koherence, opazovalec preizkusi zemljevid zapletanja zaradi gravitacije. Zanimivo je, da lahko priča preizkusi takšno kvantno naravo gravitacije, tudi če se predmeti ne zapletajo. To pomeni, da koherenca gravitacijskih objektov zaradi gravitacije vedno postane vir prepletenega zemljevida. Nadalje razpravljamo o učinku dekoherence in eksperimentalni perspektivi v tem pristopu.

► BibTeX podatki

► Reference

[1] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M Toro$check{text{s}}$, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim, and G. Milburn, “Spin Entanglement Witness for Quantum Gravity”, Phys. Rev. Lett. 119, 240401 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.240401

[2] C. Marletto and V. Vedral, “Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity”, Phys. Rev. Lett. 119, 240402 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.240402

[3] H. Chau Nguyen and F. Bernards, “Entanglement dynamics of two mesoscopic objects with gravitational interaction”, Eur. Phys. J. D 74, 69 (2020).
https: / / doi.org/ 10.1140 / epjd / e2020-10077-8

[4] H. Chevalier, A. J. Paige, and M. S. Kim, “Witnessing the nonclassical nature of gravity in the presence of unknown interactions”, Phys. Rev. A 102, 022428 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.102.022428

[5] T. W. van de Kamp, R. J. Marshman, S. Bose, and A. Mazumdar, “Quantum gravity witness via entanglement of masses: Casimir screening”, Phys. Rev. A 102, 062807 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.102.062807

[6] D. Miki, A. Matsumura, and K. Yamamoto, “Entanglement and decoherence of massive particles due to gravity”, Phys. Rev. D 103, 026017 (2021).
https: / / doi.org/ 10.1103 / PhysRevD.103.026017

[7] J. Tilly, R. J. Marshman, A. Mazumdar and S. Bose, “Qudits for Witnessing Quantum Gravity Induced Entanglement of Masses Under Decoherence”, Phys. Rev. A 104, 052416 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.052416

[8] T. Krisnanda, G. Y. Tham, M. Paternostro, and T. Paterek, “Observable quantum entanglement due to gravity”, Quantum Inf. 6, 12 (2020).
https: / / doi.org/ 10.1038 / s41534-020-0243-y

[9] S. Qvarfort, S. Bose, and A. Serafini, “Mesoscopic entanglement through central–potential interactions”, J. Phys. B: At. Mol. Opt. Phys. 53, 235501 (2020).
https: / / doi.org/ 10.1088 / 1361-6455 / abbe8d

[10] A. A. Balushi, W. Cong, and R. B. Mann, “Optomechanical quantum Cavendish experiment”, Phys. Rev. A 98 043811 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.98.043811

[11] H. Miao, D. Martynov, H. Yang, and A. Datta, “Quantum correlations of light mediated by gravity”, Phys. Rev. A 101 063804 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.063804

[12] A. Matsumura, K. Yamamoto, “Gravity-induced entanglement in optomechanical systems”, Phys. Rev. D 102 106021 (2020).
https: / / doi.org/ 10.1103 / PhysRevD.102.106021

[13] D. Miki, A. Matsumura, K. Yamamoto, “Non-Gaussian entanglement in gravitating masses: The role of cumulants”, Phys. Rev. D 105, 026011 (2022).
https: / / doi.org/ 10.1103 / PhysRevD.105.026011

[14] D. Carney, H. Muller, and J. M. Taylor, “Using an Atom Interferometer to Infer Gravitational Entanglement Generation”, Phys. Rev. X Quantum 2 030330 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.030330

[15] J. S. Pedernales, K. Streltsov and M. Plenio, “Enhancing Gravitational Interaction between Quantum Systems by a Massive Mediator”, Phys. Rev. Lett. 128, 110401 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.110401

[16] A. Matsumura, Y. Nambu and K. Yamamoto, “Leggett-Garg inequalities for testing quantumness of gravity”, Phys. Rev. A 106,012214 (2022).
https: / / doi.org/ 10.1103 / PhysRevA.106.012214

[17] M. Bahrami, A. Großardt, S. Donadi and A. Bassi, “The Schrödinger–Newton equation and its foundations”, New J. Phys. 16, 115007 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​11/​115007

[18] D. Kafri, J. M. Taylor, and G. J. Milburn, “A classical channel model for gravitational decoherence”, New J. Phys. 16, 065020 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​6/​065020

[19] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying Coherence”, Phys. Rev. Lett. 113, 140401 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.113.140401

[20] A. W. Harrow and M. A. Nielsen, “Robustness of quantum gates in the presence of noise”, Phys. Rev. A 68, 012308 (2003).
https: / / doi.org/ 10.1103 / PhysRevA.68.012308

[21] F. G. S. L. Brand$tilde{text{a}}$o and M. B. Plenio, “A Reversible Theory of Entanglement and its Relation to the Second Law”, Commun. Math. Phys. 295, 829 (2010).
https:/​/​doi.org/​10.1007/​s00220-010-1003-1

[22] M. A. Nielsen and I. Chuang, “Quantum Computation and Quantum Information” (Cambridge University Press, Cambridge, England, 2002).
https: / / doi.org/ 10.1017 / CBO9780511976667

[23] A. Matsumura, “Path-entangling operation and quantum gravitational interaction”, Phys. Rev. A 105, 042425 (2022).
https: / / doi.org/ 10.1103 / PhysRevA.105.042425

[24] S. Bose, A. Mazumdar, M. Schut, and M. Toro$check{text{s}}$, “Mechanism for the quantum natured gravitons to entangle masses”, Phys. Rev. D 105, 106028 (2022).
https: / / doi.org/ 10.1103 / PhysRevD.105.106028

[25] R. J. Marshman, A. Mazumdar, and S. Bose, “Locality and entanglement in table-top testing of the quantum nature of linearized gravity”, Phys. Rev. A 101, 052110 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.052110

[26] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement”, Rev. Mod. Phys. 81, (2009) 865.
https: / / doi.org/ 10.1103 / RevModPhys.81.865

[27] R. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model”, Phys. Rev. A 40, 4277 (1989).
https: / / doi.org/ 10.1103 / PhysRevA.40.4277

[28] A. Peres, “Separability Criterion for Density Matrices”, Phys. Rev. Lett. 77, (1996) 1413.
https: / / doi.org/ 10.1103 / PhysRevLett.77.1413

[29] M. Horodecki, R. Horodecki, and P. Horodecki, “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A 223, (1996) 1-8.
https:/​/​doi.org/​10.1016/​S0375-9601(96)00706-2

[30] G. Vidal and R. F. Werner, “Computable measure of entanglement”, Phys. Rev. A 65, 032314 (2002).
https: / / doi.org/ 10.1103 / PhysRevA.65.032314

[31] E. M. Rains, “Entanglement purification via separable superoperators”, arXiv: quant-ph/​9707002(1997).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​9707002
arXiv: kvant-ph / 9707002

[32] V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures”, Phys. Rev. A 57, 1619 (1998).
https: / / doi.org/ 10.1103 / PhysRevA.57.1619

[33] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A. Winter, “Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask)”, Commun. Math. Phys. 328, 303 (2014).
https:/​/​doi.org/​10.1007/​s00220-014-1953-9

[34] J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein, “Entangling Operations and Their Implementation Using a Small Amount of Entanglement”, Phys. Rev. Lett. 86, 544 (2001).
https: / / doi.org/ 10.1103 / PhysRevLett.86.544

[35] A. Jamiolkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators”, Rep. Math. Phys. 3, 275 (1972).
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[36] M.-D. Choi, “Completely positive linear maps on complex matrices”, Linear Algebra Appl. 10, 285 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[37] S. Pal, P. Batra, T. Krisnanda, T. Paterek, and T. S. Mahesh, “Experimental localisation of quantum entanglement through monitored classical mediator”, Quantum 5, 478 (2021).
https:/​/​doi.org/​10.22331/​q-2021-06-17-478

[38] T. Krisnanda, M. Zuppardo, M. Paternostro, and T. Paterek, and T. S. Mahesh, “Revealing Nonclassicality of Inaccessible Objects”, Phys. Rev. Lett. 119, 120402 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.120402

Navedel

[1] Anirban Roy Chowdhury, Ashis Saha, and Sunandan Gangopadhyay, “Mixed state information theoretic measures in boosted black brane”, arXiv: 2204.08012.

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2022-10-11 13:56:59). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

Pridobitve ni bilo mogoče Crossref citirani podatki med zadnjim poskusom 2022-10-11 13:56:57: Citiranih podatkov za 10.22331 / q-2022-10-11-832 od Crossrefa ni bilo mogoče pridobiti. To je normalno, če je bil DOI registriran pred kratkim.

Časovni žig:

Več od Quantum Journal