Beyond steric selectivity of ions using ångström-scale capillaries

Source Node: 2042018
  • Nightingale, E. R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    Article  CAS  Google Scholar 

  • Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    Article  CAS  Google Scholar 

  • Speight, J. Lange’s Handbook of Chemistry 16th edn (McGraw Hill Education, 2005).

  • Jentsch, T. J. & Günther, W. Chloride channels: an emerging molecular picture. BioEssays 19, 117–126 (1997).

    Article  CAS  Google Scholar 

  • Hille, B. Ion Channels of Excitable Membranes (Sinauer, 2001).

  • Dudev, T. & Lim, C. Factors governing the Na+ vs K+ selectivity in sodium ion channels. J. Am. Chem. Soc. 132, 2321–2332 (2010).

    Article  CAS  Google Scholar 

  • Lj, M. The penetration of some cations into muscle. J. Gen. Physiol. 42, 817–829 (1959).

    Article  Google Scholar 

  • Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  • Sahu, S. & Zwolak, M. Colloquium: ionic phenomena in nanoscale pores through 2D materials. Rev. Mod. Phys. 91, 021004 (2019).

    Article  CAS  Google Scholar 

  • Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  Google Scholar 

  • Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    Article  CAS  Google Scholar 

  • Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  Google Scholar 

  • Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M. & Elimelech, M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018).

    Article  CAS  Google Scholar 

  • Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article  CAS  Google Scholar 

  • Thiruraman, J. P., Masih Das, P. & Drndić, M. Ions and water dancing through atom-scale holes: a perspective toward ‘size zero’. ACS Nano 14, 3736–3746 (2020).

    Article  CAS  Google Scholar 

  • Karahan, H. E. et al. MXene materials for designing advanced separation membranes. Adv. Mater. 32, 1906697 (2020).

    Article  CAS  Google Scholar 

  • Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    Article  CAS  Google Scholar 

  • Ma, J. et al. Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. J. Am. Chem. Soc. 141, 4264–4272 (2019).

    Article  CAS  Google Scholar 

  • Fu, Y. et al. Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 12, 24281–24288 (2020).

    Article  CAS  Google Scholar 

  • Li, X. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10, 2490 (2019).

    Article  Google Scholar 

  • Xin, W. et al. Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nat. Commun. 13, 1701 (2022).

    Article  CAS  Google Scholar 

  • You, Y. et al. Angstrofluidics: walking to the limit. Annu. Rev. Mater. Res. 52, 189–218 (2022).

    Article  Google Scholar 

  • Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  Google Scholar 

  • Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  CAS  Google Scholar 

  • Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  CAS  Google Scholar 

  • Haynes, W. M. CRC Handbook of Chemistry and Physics 96th edn (CRC Press, 2003).

  • Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    Article  CAS  Google Scholar 

  • Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).

    Article  CAS  Google Scholar 

  • Perram, J. W. & Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 8, 4200–4213 (2006).

    Article  CAS  Google Scholar 

  • Yu, Y. et al. Charge asymmetry effect in ion transport through angstrom-scale channels. J. Phys. Chem. C 123, 1462–1469 (2019).

    Article  CAS  Google Scholar 

  • Razmjou, A. et al. Lithium ion-selective membrane with 2D subnanometer channels. Water Res. 159, 313–323 (2019).

    Article  CAS  Google Scholar 

  • Bajaj, P., Richardson, J. O. & Paesani, F. Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex. Nat. Chem. 11, 367–374 (2019).

    Article  CAS  Google Scholar 

  • Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    Article  CAS  Google Scholar 

  • Grosjean, B. et al. Chemisorption of hydroxide on 2D materials from DFT calculations: graphene versus hexagonal boron nitride. J. Phys. Chem. Lett. 7, 4695–4700 (2016).

    Article  CAS  Google Scholar 

  • Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021).

    Article  CAS  Google Scholar 

  • Sajja, R. et al. Hydrocarbon contamination in angström-scale channels. Nanoscale 13, 9553–9560 (2021).

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  • Koneshan, S., Rasaiah, J. C., Lynden-Bell, R. M. & Lee, S. H. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J. Phys. Chem. B 102, 4193–4204 (1998).

    Article  CAS  Google Scholar 

  • Agieienko, V. N., Kolesnik, Y. V. & Kalugin, O. N. Structure, solvation, and dynamics of Mg2+, Ca2+, Sr2+, and Ba2+ complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: a molecular dynamics simulation study. J. Chem. Phys. 140, 194501 (2014).

    Article  Google Scholar 

  • Lorentz, H. A. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248, 127–136 (1881).

    Article  Google Scholar 

  • Berthelot, D. Sur le mélange des gaz. Compt. Rendus 126, 1703–1706 (1898).

    Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  • Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Delley, B. An all‐electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology