Chimeric nanobody-decorated liposomes by self-assembly - Nature Nanotechnology

Chimeric nanobody-decorated liposomes by self-assembly – Nature Nanotechnology

Source Node: 2487301
  • Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Castro Bravo, K. M. & Liu, J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 6, 78–94 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mamot, C. et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 65, 11631–11638 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Alavi, M. & Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34, 20180032 (2019).

  • Leserman, L. D., Machy, P. & Barbet, J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 293, 226–228 (1981).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol. Prog. 21, 205–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. R., Sefah, K., Liu, H. P., Wang, R. W. & Tan, W. H. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl Acad. Sci. USA 107, 5–10 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu, Y. N. et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol. Pharm. 17, 1276–1292 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys. Rep. 27, 101067 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, E. J., Lee, J. W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    Article  CAS  Google Scholar 

  • Ma et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 44, 1240–1256 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Li, L. et al. Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angew. Chem. Int. Ed. Engl. 60, 2221–2231 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Finger, C., Escher, C. & Schneider, D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Signal 2, ra56 (2009).

    Article  PubMed  Google Scholar 

  • Lāce, I., Cotroneo, E. R., Hesselbarth, N. & Simeth, N. A. Artificial peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion. J. Pept. Sci. 29, e3466 (2023).

    Article  PubMed  Google Scholar 

  • Rahman, M. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid domain in uniform-size peptide vesicles for controlled release. J. Am. Chem. Soc. 140, 17956–17961 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Moon, J. J. & Cheng, W. Quantitation and stability of protein conjugation on liposomes for controlled density of surface epitopes. Bioconjug. Chem. 29, 1251–1260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira, S. et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J. Control. Release 145, 165–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  • van der Meel, R. et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J. Control. Release 159, 281–289 (2012).

    Article  PubMed  Google Scholar 

  • Li, N. et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv. 24, 1770–1781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. & Hosseini, H. R. M. Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells. Cell. Mol. Bioeng. 10, 263–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woll, S. et al. Sortagging of liposomes with a murine CD11b-specific VHH increases in vitro and in vivo targeting specificity of myeloid cells. Eur. J. Pharm. Biopharm. 134, 190–198 (2019).

    Article  PubMed  Google Scholar 

  • Mesquita, B. S. et al. The impact of nanobody density on the targeting efficiency of PEGylated liposomes. Int. J. Mol. Sci. 23, 14974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura, T., Hirose, S., Sasaki, Y. & Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 142, 154–161 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Marsh, D. Thermodynamics of phospholipid self-assembly. Biophys. J. 102, 1079–1087 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wan, Y. et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J. Phys. Chem. B 115, 13891–13896 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Grillo, I., Morfin, I. & Prevost, S. Structural characterization of pluronic micelles swollen with perfume molecules. Langmuir 34, 13395–13408 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Andersen, T. et al. Chitosan in mucoadhesive drug delivery: focus on local vaginal therapy. Mar. Drugs 13, 222–236 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Takikawa, M., Fujisawa, M., Yoshino, K. & Takeoka, S. Intracellular distribution of lipids and encapsulated model drugs from cationic liposomes with different uptake pathways. Int J. Nanomed. 15, 8401–8409 (2020).

    Article  CAS  Google Scholar 

  • Lin, W. S. & Malmstadt, N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur. Biophys. J. 48, 549–558 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Haque, M. E., McIntosh, T. J. & Lentz, B. R. Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “Nature’s own” fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M. M., Abosheasha, M. A., Ito, Y. & Ueda, M. DNA-induced fusion between lipid domains of peptide–lipid hybrid vesicles. Chem. Commun. 58, 11799–11802 (2022).

    Article  CAS  Google Scholar 

  • Dominguez, L., Foster, L., Straub, J. E. & Thirumalai, D. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc. Natl Acad. Sci. USA 113, E5281–E5287 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang, B. H. et al. Sequential intercellular delivery nanosystem for enhancing ROS-Induced antitumor therapy. Nano Lett. 19, 3505–3518 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tarafdar, P. K., Chakraborty, H., Dennison, S. M. & Lentz, B. R. Phosphatidylserine inhibits and calcium promotes model membrane fusion. Biophys. J. 103, 1880–1889 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lygina, A. S., Meyenberg, K., Jahn, R. & Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int Ed. 50, 8597–8601 (2011).

    Article  CAS  Google Scholar 

  • Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. ChemBioChem 12, 1049–2011 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, H. J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kozlowska, D. et al. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin’s lymphoma (human Burkitt’s lymphoma). RSC Adv. 4, 18007–18016 (2014).

    Article  CAS  ADS  Google Scholar 

  • Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric pressure between membrane-bound proteins opposes lipid phase separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lomize, A. L., Lomize, M. A., Krolicki, S. R. & Pogozheva, I. D. Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res. 45, D250–D255 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovcevska, I. et al. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS ONE 9, e113688 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Hmila, I. et al. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 24, 3479–3489 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Farajpour, Z., Rahbarizadeh, F., Kazemi, B. & Ahmadvand, D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem. Biophys. Res. Commun. 446, 132–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Roovers, R. C. et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 129, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article  ADS  Google Scholar 

  • Nguyen, H., Maier, J., Huang, H., Perrone, V. & Simmerling, C. Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J. Am. Chem. Soc. 136, 13959–13962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  ADS  Google Scholar 

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  • DeLano W. L. PyMOL molecular viewer: updates and refinements. Abstr. Pap. Am. Chem. S 238, (2009).

  • Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17, 6281–6291 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Et-Thakafy, O. et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic force spectroscopy. Langmuir 33, 5117–5126 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Custodio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Callister, W. D. & Rethwisch, D. G. Materials Science and Engineering: An Introduction Vol. 7 (Wiley, 2020).

  • McQuarrie, D. A., Jachimowski, C. & Russell, M. Kinetics of small systems. II. J. Chem. Phys. 40, 2914–2921 (1964).

    Article  CAS  ADS  Google Scholar 

  • Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Piper, J. W., Swerlick, R. A. & Zhu, C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall 0.2. Couette flow. Chem. Eng. Sci. 22, 637–651 (1967).

  • Time Stamp:

    More from Nature Nanotechnology