Gene drive in species complexes: defining target organisms

Gene drive in species complexes: defining target organisms

Source Node: 1896439
  • Site-specific selfish genes as tools for the control and genetic engineering of natural populations.

    Proc. Biol. Sci. 2003; 270: 921-928

    • Burt A.
    • et al.

    Gene drive to reduce malaria transmission in sub-Saharan Africa.

    J. Responsible Innov. 2018; 5: S66-S80

    • Wang G.H.
    • et al.

    Symbionts and gene drive: two strategies to combat vector-borne disease.

    Trends Genet. 2022; 38: 708-723

    • African Union Development Agency – New Partnership for Africa’s Development

    Gene Drives for Malaria Control and Elimination in Africa.

    2018

    • World Health Organization

    Evaluation of Genetically Modified Mosquitoes for the Control of Vector-Borne Diseases.

    WHO, 2020

    • National Academies of Sciences, Engineering, and Medicine

    Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values.

    National Academies Press, 2016

    • Landis W.G.
    • et al.

    A general risk-based adaptive management scheme incorporating the Bayesian Network Relative Risk Model with the South River, Virginia, as case study.

    Integr. Environ. Assess. Manag. 2017; 13: 115-126

    • James S.
    • et al.

    Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in Sub-Saharan Africa: recommendations of a Scientific Working Group.

    Am. J. Trop. Med. Hyg. 2018; 98: 1-49

    • EFSA Panel on Genetically Modified Organisms
    • et al.

    Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives.

    EFSA J. 2020; 18e06297

    • James S.L.
    • et al.

    Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing.

    Vector Borne Zoonotic Dis. 2020; 20: 237-251

    • World Health Organization

    Guidance Framework for Testing Genetically Modified Mosquitoes.

    2nd edn. WHO, 2021

    • Ickowicz A.
    • et al.

    Predicting the spread and persistence of genetically modified dominant sterile male mosquitoes.

    Parasit. Vectors. 2021; 14: 480

    • Connolly J.B.
    • et al.

    Recommendations for environmental risk assessment of gene drive applications for malaria vector control.

    Malar. J. 2022; 21: 152

    • Romeis J.
    • et al.

    The value of existing regulatory frameworks for the environmental risk assessment of agricultural pest control using gene drives.

    Environ. Sci. Policy. 2020; 108: 19-36

    • Devos Y.
    • et al.

    Gene drive-modified organisms: developing practical risk assessment guidance.

    Trends Biotechnol. 2021; 39: 853-856

    • Devos Y.
    • et al.

    Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment.

    Crit. Rev. Biotechnol. 2021; : 1-17

    • Devos Y.
    • et al.

    Risk management recommendations for environmental releases of gene drive modified insects.

    Biotechnol. Adv. 2021; 107807

    • Davidson G.

    Anopheles gambiae, a complex of species.

    Bull. World Health Organ. 1964; 31: 625-634

    • Besansky N.J.
    • et al.

    Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation.

    Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 10818-10823

    • Small S.T.
    • et al.

    Radiation with reticulation marks the origin of a major malaria vector.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 31583-31590

    • Antonio-Nkondjio C.
    • Simard F.

    Highlights on anopheles nili and anopheles moucheti, malaria vectors in Africa.

    in: Anopheles Mosquitoes – New insights into Malaria Vectors. IntechOpen, 2013

    • Crawford J.E.
    • et al.

    Reticulate speciation and barriers to introgression in the Anopheles gambiae species complex.

    Genome Biol. Evol. 2015; 7: 3116-3131

    • Thelwell N.J.
    • et al.

    Evidence for mitochondrial introgression between Anopheles bwambae and Anopheles gambiae.

    Insect Mol. Biol. 2000; 9: 203-210

    • Kyrou K.
    • et al.

    A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes.

    Nat. Biotechnol. 2018; 36: 1062-1066

    • Hammond A.
    • et al.

    Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field.

    Nat. Commun. 2021; 12: 4589

    • Sinka M.E.
    • et al.

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis.

    Parasit. Vectors. 2010; 3: 117

    • Afrane Y.
    • et al.

    Secondary malaria vectors of Sub-Saharan Africa: threat to malaria elimination on the continent?.

    in: Rodriguez-Morales A.J. Current Topics in Malaria. IntechOpen, 2016

    • Burt A.
    • Crisanti A.

    Gene drive: evolved and synthetic.

    ACS Chem. Biol. 2018; 13: 343-346

    • White G.B.

    Chromosomal evidence for natural interspecific hybridization by mosquitoes of the Anopheles gambiae complex.

    Nature. 1971; 231: 184-185

    • Costantini C.
    • et al.

    Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in anopheles gambiae.

    BMC Ecol. 2009; 9: 16

    • Pombi M.
    • et al.

    Dissecting functional components of reproductive isolation among closely related sympatric species of the anopheles gambiae complex.

    Evol. Appl. 2017; 10: 1102-1120

    • Epopa P.S.
    • et al.

    Seasonal malaria vector and transmission dynamics in western Burkina Faso.

    Malar. J. 2019; 18: 113

    • Irish S.R.
    • et al.

    Updated list of anopheles species (Diptera: Culicidae) by country in the Afrotropical Region and associated islands.

    Zootaxa. 2020; 4747 ()

    • Kyalo D.
    • et al.

    A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016.

    Wellcome Open Res. 2017; 2: 57

    • North A.R.
    • et al.

    Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.

    BMC Biol. 2020; 18: 98

    • Connolly J.B.
    • et al.

    Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa.

    Malar. J. 2021; 20

    • Lanzaro G.C.
    • Lee Y.

    Speciation in Anopheles gambiae – the distribution of genetic polymorphism and patterns of reproductive isolation among natural populations.

    in: Manguin S. Anopheles Mosquitoes – New Insights into Malaria Vectors. IntechOpen, 2013

    • Miles A.
    • et al.

    Genetic diversity of the African malaria vector Anopheles gambiae.

    Nature. 2017; 552: 96-100

    • Diabate A.
    • Tripet F.

    Targeting male mosquito mating behaviour for malaria control.

    Parasit. Vectors. 2015; 8: 347

    • Niang A.
    • et al.

    Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa?.

    Parasit. Vectors. 2015; 8: 586

    • Lang A.
    • et al.

    Selection of non-target Lepidoptera species to test Bt maize effects in the laboratory: which species and how to breed them?.

    BioRisk. 2020; 15: 45-65

    • Baudrot V.
    • et al.

    When the average hides the risk of Bt-corn pollen on non-target Lepidoptera: Application to Aglais io in Catalonia.

    Ecotoxicol. Environ. Saf. 2021; 207111215

    • Meissle M.
    • Romeis J.

    Transfer of Cry1Ac and Cry2Ab proteins from genetically engineered Bt cotton to herbivores and predators.

    Insect Sci. 2017; 25: 823-832

    • Li Y.
    • et al.

    Bt rice in China – focusing the nontarget risk assessment.

    Plant Biotechnol. J. 2017; 15: 1340-1345

    • Harris A.F.
    • et al.

    Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes.

    Nat. Biotechnol. 2012; 30: 828-830

    • Carvalho D.O.
    • et al.

    Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes.

    PLoS Negl. Trop. Dis. 2015; 9e0003864

    • Gorman K.
    • et al.

    Short-term suppression of Aedes aegypti using genetic control does not facilitate Aedes albopictus.

    Pest Manag. Sci. 2016; 72: 618-628

    • White G.B.

    Anopheles bwambae sp.n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An. gambiae complex (Diptera: Culicidae).

    Syst. Entomol. 1985; 10: 501-522

    • Benedict M.Q.
    • et al.

    Colonisation and mass rearing: learning from others.

    Malar. J. 2009; 8: S4

    • Ngowo H.S.
    • et al.

    Fitness characteristics of the malaria vector Anopheles funestus during an attempted laboratory colonization.

    Malar. J. 2021; 20: 148

    • Leftwich P.T.
    • et al.

    Genetic pest management and the background genetics of release strains.

    Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2021; 37620190805

    • Charalambous M.
    • et al.

    Electrophoretic and DNA identification of Anopheles bwambae and A. gambiae (Diptera: Culicidae) in western Uganda.

    Bull. Entomol. Res. 2007; 89: 111-117

    • Clarkson C.S.
    • et al.

    Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation.

    Nat. Commun. 2014; 5: 4248

    • Norris L.C.
    • et al.

    Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets.

    Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 815-820

    • Mancini E.
    • et al.

    Adaptive potential of hybridization among malaria vectors: introgression at the immune locus TEP1 between Anopheles coluzzii and A. gambiae in ‘Far-West’ Africa.

    PLoS One. 2015; 10e0127804

    • Clarke A.R.
    • et al.

    The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?.

    Ann. Appl. Biol. 2011; 158: 26-54

    • Edelman N.B.
    • et al.

    Genomic architecture and introgression shape a butterfly radiation.

    Science. 2019; 366: 594-599

    • Meier J.I.
    • et al.

    Ancient hybridization fuels rapid cichlid fish adaptive radiations.

    Nat. Commun. 2017; 8: 14363

    • Pyron R.A.
    • et al.

    Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones.

    Ecol. Evol. 2022; 12e8574

    • Chan K.O.
    • et al.

    Species delimitation with gene flow: a methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs.

    Mol. Ecol. 2017; 26: 5435-5450

    • Barley A.J.
    • et al.

    The challenge of species delimitation at the extremes: diversification without morphological change in philippine sun skinks.

    Evolution. 2013; 67: 3556-3572

    • Lamichhaney S.
    • et al.

    Evolution of Darwin’s finches and their beaks revealed by genome sequencing.

    Nature. 2015; 518: 371-375

    • Song Y.
    • et al.

    Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice.

    Curr. Biol. 2011; 21: 1296-1301

    • Teng H.
    • et al.

    Population genomics reveals speciation and introgression between Brown Norway Rats and their sibling species.

    Mol. Biol. Evol. 2017; 34: 2214-2228

    • Adavoudi R.
    • Pilot M.

    Consequences of hybridization in mammals: a systematic review.

    Genes (Basel). 2021; 13: 50

    • Alphey L.S.
    • et al.

    Opinion: standardizing the definition of gene drive.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 30864-30867

    • Turner G.
    • et al.

    Means and ends of effective global risk assessments for genetic pest management.

    BMC Proc. 2018; 12: 13

    • World Health Organization

    World Malaria Report.

    WHO, 2021

    • Hammond A.M.
    • Galizi R.

    Gene drives to fight malaria: current state and future directions.

    Pathog. Glob. Health. 2018; 111: 412-423

    • Hammond A.
    • et al.

    A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Nat. Biotechnol. 2016; 34: 78-83

    • Fontaine M.C.
    • et al.

    Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics.

    Science. 2015; 3471258524

    • Sinka M.E.
    • et al.

    A global map of dominant malaria vectors.

    Parasit. Vectors. 2012; 5: 69

    • Lobo N.F.
    • et al.

    Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools.

    Sci. Rep. 2015; 5: 17952

    • Coetzee M.
    • et al.

    Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex.

    Zootaxa. 2013; 3619: 246-274

    • Barron M.G.
    • et al.

    A new species in the major malaria vector complex sheds light on reticulated species evolution.

    Sci. Rep. 2019; 9: 14753

    • Riehle M.M.
    • et al.

    A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites.

    Science. 2011; 331: 596-598

    • Crawford J.E.
    • et al.

    Evolution of GOUNDRY, a cryptic subgroup of Anopheles gambiae s.l., and its impact on susceptibility to Plasmodium infection.

    Mol. Ecol. 2016; 25: 1494-1510

    • Tennessen J.A.
    • et al.

    A population genomic unveiling of a new cryptic mosquito taxon within the malaria-transmitting Anopheles gambiae complex.

    Mol. Ecol. 2021; 30: 775-790

    • Davidson G.

    Anopheles gambiae complex.

    Nature. 1962; 196: 907

    • Davidson G.

    The five mating-types in the Anopheles gambiae complex.

    Riv. Malariol. 1964; 43: 167-183

    • Davidson G.
    • et al.

    The Anopheles gambiae complex.

    in: Wright J.W. Pal R. Genetics of Insect Vectors of Disease. Elsevier, 1967: 211-250

    • Coluzzi M.
    • et al.

    Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex.

    Trans. R. Soc. Trop. Med. Hyg. 1979; 73: 483-497

    • Temu E.A.
    • et al.

    Detection of hybrids in natural populations of the Anopheles gambiae complex by the rDNA-based, PCR method.

    Ann. Trop. Med. Parasitol. 1997; 91: 963-965

    • della Torre A.
    • et al.

    Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa.

    Insect Mol. Biol. 2001; 10: 9-18

    • Lee Y.
    • et al.

    Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae.

    Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 19854-19859

    • Weetman D.
    • et al.

    Contemporary gene flow between wild An. gambiae s.s. and An. arabiensis.

    Parasit. Vectors. 2014; 7: 345

    • Neafsey D.E.
    • et al.

    Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    Science. 2015; 3471258522

  • Guidance on the environmental risk assessment of genetically modified animals.

    EFSA J. 2013; 11: 3200

  • Time Stamp:

    More from Biotechnology Trends