Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics - Nature Nanotechnology

Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics – Nature Nanotechnology

Source Node: 2562535
  • Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veerapandian, S. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Z. et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 31, 1903446 (2019).

    Article 

    Google Scholar
     

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., He, T., Zhou, H., Zhang, Z. & Lee, C. Artificial intelligence enhanced sensors—enabling technologies to next-generation healthcare and biomedical platform. Bioelectron. Med. 9, 17 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D.-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sim, K., Rao, Z., Ershad, F. & Yu, C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv. Mater. 32, 1902417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. J. et al. Skin electronics: next‐generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamagishi, K., Zhou, W., Ching, T., Huang, S. Y. & Hashimoto, M. Ultra‐deformable and tissue‐adhesive liquid metal antennas with high wireless powering efficiency. Adv. Mater. 33, 2008062 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhuang, Q. et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9, eadg8602 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, D. et al. Adaptive self‐organization of nanomaterials enables strain‐insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T., Liu, Q., Liu, H., Xu, B. & Xu, H. Printable and highly stretchable viscoelastic conductors with kinematically reconstructed conductive pathways. Adv. Mater. 34, 2202418 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. H. et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano 13, 6531–6539 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, B. et al. Gas‐permeable, multifunctional on‐skin electronics based on laser‐induced porous graphene and sugar‐templated elastomer sponges. Adv. Mater. 30, 1804327 (2018).

    Article 

    Google Scholar
     

  • Yi, H. et al. Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method. J. Mater. Chem. A 7, 22550–22558 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021).

    Article 

    Google Scholar
     

  • Zhu, D., Handschuh-Wang, S. & Zhou, X. Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5, 16467–16497 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yao, S. et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv. Mater. Technol. 7, 2101637 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, W. et al. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14, 5798–5805 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Progress report on phase separation in polymer solutions. Adv. Mater. 31, 1806733 (2019).

    Article 

    Google Scholar
     

  • Hołda, A. K. & Vankelecom, I. F. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 132, 42130 (2015).

    Article 

    Google Scholar
     

  • Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H.-W. et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 13, 2879–2884 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H. J., Jung, B., Kang, Y. S. & Lee, H. Phase separation of polymer casting solution by nonsolvent vapor. J. Membr. Sci. 245, 103–112 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sun, X., Sun, G. & Wang, X. Morphology modeling for polymer monolith obtained by non-solvent-induced phase separation. Polymer 108, 432–441 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Binks, B. & Lumsdon, S. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17, 4540–4547 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hu, N., Karube, Y., Yan, C., Masuda, Z. & Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. & Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Taherian, R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26–M38 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boland, C. S. et al. Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354, 1257–1260 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H., Han, Z. & Willenbacher, N. Ultrastretchable conductive elastomers with a low percolation threshold for printed soft electronics. ACS Appl. Mater. Interfaces 11, 38092–38102 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Ji, X. & Liang, J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. Npj Flex. Electron. 5, 11 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 11, 5629 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T.-L. et al. Battery-free, tuning circuit–inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci. Adv. 8, eabo7049 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Time Stamp:

    More from Nature Nanotechnology