Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles - Nature Nanotechnology

Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles – Nature Nanotechnology

Source Node: 2489764
  • Global Tuberculosis Report 2022 (World Health Organization, 2022).

  • Kislitsyna, N. A. Comparative evaluation of rifampicin and isoniazid penetration into the pathological foci of the lungs in tuberculosis patients. Probl. Tuberk. 4, 55–57 (1985).

    Google Scholar 

  • Khan, A. et al. Genetic variants and drug efficacy in tuberculosis: a step toward personalized therapy. Glob. Med. Genet. 9, 90–96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tostmann, A. et al. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol. 23, 192–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Mane, S. R. et al. Increased bioavailability of rifampicin from stimuli-responsive smart nano carrier. ACS Appl. Mater. Interfaces 6, 16895–16902 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mei, Q. et al. Formulation and in vitro characterization of rifampicin-loaded porous poly (ε-caprolactone) microspheres for sustained skeletal delivery. Drug Des. Devel. Ther. 12, 1533–1544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu, P. et al. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to osteoarticular tuberculosis. Drug Deliv. Transl. Res. 11, 1509–1519 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12, 8646–8661 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Engering, A. J. et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417–2425 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jafari, A., Nagheli, A., Foumani, A. A., Soltani, B. & Goswami, R. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med. J. 35, e194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maphasa, R. E., Meyer, M. & Dube, A. The macrophage response to Mycobacterium tuberculosis and opportunities for autophagy inducing nanomedicines for tuberculosis therapy. Front. Cell. Infect. Microbiol. 10, 618414 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Jiang, Q., Bushkin, Y., Subbian, S. & Tyagi, S. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. mBio 10, e02550–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabriek, B. O. et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113, 887–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Matsubara, V. H. et al. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and lipopolysaccharide. Front. Microbiol. 8, 2280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaou, G., Goodall, A. H. & Erridge, C. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J. Atheroscler. Thromb. 19, 137–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Bin, L. et al. Antiviral and anti-inflammatory treatment with multifunctional alveolar macrophage-like nanoparticles in a surrogate mouse model of COVID-19. Adv. Sci. (Weinh.) 8, 2003556 (2021).

    Google Scholar 

  • Wu, H. H., Zhou, Y., Tabata, Y. & Gao, J. Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J. Control. Release 294, 102–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, F. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog. 6, e1000895 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Takaki, K., Davis, J. M., Winglee, K. & Ramakrishnan, L. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat. Protoc. 8, 1114–1124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funct. Mater. 32, 2205371 (2022).

    Article  CAS  Google Scholar 

  • Tang, M. et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano 13, 10405–10418 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Jiang, Y., Han, Y., Pu, K. & Zhang, R. A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33, e2008061 (2021).

    Article  PubMed  Google Scholar 

  • Goñi, F. M. The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim. Biophys. Acta Biomembr. 1838, 1467–1476 (2022).

    Article  Google Scholar 

  • Ramasamy, M., Lee, S. S., Yi, D. K. & Kim, K. Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria. J. Mater. Chem. B 2, 981–988 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. et al. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem. Int. Ed. 56, 16239–16242 (2017).

    Article  CAS  Google Scholar 

  • Zhang, J. et al. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. J. Hazard. Mater. 342, 121–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Hessel, C. M. et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li, Y. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11, 2621–2626 (2020).

    Article  Google Scholar 

  • Wang, J. et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics. Adv. Mater. 34, e2106082 (2022).

    Article  PubMed  Google Scholar 

  • Liu, S. et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer. ACS Nano 14, 14228–14239 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. 58, 2407–2412 (2019).

    Article  CAS  ADS  Google Scholar 

  • Miao, W. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funct. Mater. 32, 2203571 (2022).

    Google Scholar 

  • Yamamoto, T., Takiwaki, H., Arase, S. & Ohshima, H. Derivation and clinical application of special imaging by means of digital cameras and ImageJ freeware for quantification of erythema and pigmentation. Skin Res. Technol. 14, 26–34 (2008).

  • Mitteer, D. R., Greer, B. D., Fisher, W. W. & Cohrs, V. L. Teaching behavior technicians to create publication-quality, single-case design graphs in GraphPad prism 7. J. Appl. Behav. Anal. 51, 998–1010 (2018).

  • Time Stamp:

    More from Nature Nanotechnology