Strategies for non-viral vectors targeting organs beyond the liver - Nature Nanotechnology

Strategies for non-viral vectors targeting organs beyond the liver – Nature Nanotechnology

Source Node: 2417349
  • Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    CAS  Google Scholar 

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  Google Scholar 

  • Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    Article  CAS  Google Scholar 

  • Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).

    Article  CAS  Google Scholar 

  • Van Haasteren, J. et al. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article  Google Scholar 

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020). This Review thoroughly discusses the characteristics of NPs required for effective delivery within a biological context.

    Article  CAS  Google Scholar 

  • Patel, S. et al. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).

    Article  CAS  Google Scholar 

  • Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  CAS  Google Scholar 

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article  CAS  Google Scholar 

  • Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article  CAS  Google Scholar 

  • Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  CAS  Google Scholar 

  • Witzigmann, D. et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    Article  CAS  Google Scholar 

  • Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). This study discovered that the ApoE–LDLR pathway facilitates hepatocyte transfection when LNPs contain ionizable cationic lipids but not when permanently cationic lipids are used.

    Article  CAS  Google Scholar 

  • Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  Google Scholar 

  • Kasiewicz, L. N. et al. GalNAc–lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    Article  CAS  Google Scholar 

  • Ozelo, M. C. et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).

    Article  CAS  Google Scholar 

  • Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    Article  CAS  Google Scholar 

  • Lawitz, E. J. et al. BMS‐986263 in patients with advanced hepatic fibrosis: 36‐week results from a randomized, placebo‐controlled phase 2 trial. Hepatology 75, 912–923 (2022).

    Article  CAS  Google Scholar 

  • Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    Article  CAS  Google Scholar 

  • Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mrna to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Article  Google Scholar 

  • Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  Google Scholar 

  • Viger-Gravel, J. et al. Structure of lipid nanoparticles containing sirna or mrna by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).

    Article  CAS  Google Scholar 

  • Goula, D. et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5, 1291–1295 (1998).

    CAS  Google Scholar 

  • Green, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008).

    Article  CAS  Google Scholar 

  • Joubert, F. et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J. Control. Release 356, 580–594 (2023).

    CAS  Google Scholar 

  • Yang, W., Mixich, L., Boonstra, E. & Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 12, 2202688 (2023).

    Article  CAS  Google Scholar 

  • Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article  CAS  Google Scholar 

  • He, D. & Wagner, E. Defined polymeric materials for gene delivery. Macromol. Biosci. 15, 600–612 (2015).

    Article  CAS  Google Scholar 

  • Reinhard, S. & Wagner, E. How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol. Biosci. 17, 1600152 (2017).

    Article  Google Scholar 

  • DeSimone, J. M. Co-opting Moore’s law: therapeutics, vaccines and interfacially active particles manufactured via PRINT®. J. Control. Release 240, 541–543 (2016).

    CAS  Google Scholar 

  • Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019). This study explored the application of polymeric NPs for inhaled mRNA delivery, highlighting the potential advantage of polymers for nebulization through their self-assembly.

    Article  Google Scholar 

  • Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    Article  CAS  Google Scholar 

  • Wahlgren, J. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130–e130 (2012).

    Article  CAS  Google Scholar 

  • Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  Google Scholar 

  • Ståhl, A. et al. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog. 11, e1004619 (2015).

    Article  Google Scholar 

  • Melamed, J. R. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023).

    Article  CAS  Google Scholar 

  • Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article  Google Scholar 

  • Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    Article  CAS  Google Scholar 

  • Elsharkasy, O. M. et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    Article  CAS  Google Scholar 

  • Klein, D. et al. Centyrin ligands for extrahepatic delivery of siRNA. Mol. Ther. 29, 2053–2066 (2021).

    Article  CAS  Google Scholar 

  • Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article  CAS  Google Scholar 

  • Wels, M., Roels, D., Raemdonck, K., De Smedt, S. C. & Sauvage, F. Challenges and strategies for the delivery of biologics to the cornea. J. Control. Release 333, 560–578 (2021).

    CAS  Google Scholar 

  • Baran-Rachwalska, P. et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J. Control. Release 326, 192–202 (2020).

    CAS  Google Scholar 

  • Bogaert, B. et al. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J. Control. Release 350, 256–270 (2022).

    CAS  Google Scholar 

  • Kim, H. M. & Woo, S. J. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics 13, 108 (2021).

    Article  CAS  Google Scholar 

  • Yiu, G. et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol. Ther. Methods Clin. Dev. 16, 179–191 (2020).

    Article  CAS  Google Scholar 

  • Weng, C. Y. Bilateral subretinal voretigene neparvovec-rzyl (Luxturna) gene therapy. Ophthalmol. Retin. 3, 450 (2019).

    Article  Google Scholar 

  • Jaskolka, M. C. et al. Exploratory safety profile of EDIT-101, a first-in-human in vivo CRISPR gene editing therapy for CEP290-related retinal degeneration. Invest. Ophthalmol. Vis. Sci. 63, 2836–A0352 (2022).

    Google Scholar 

  • Chirco, K. R., Martinez, C. & Lamba, D. A. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vis. Res. 209, 108257 (2023).

    Article  Google Scholar 

  • Leroy, B. P. et al. Efficacy and safety of sepofarsen, an intravitreal RNA antisense oligonucleotide, for the treatment of CEP290-associated Leber congenital amaurosis (LCA10): a randomized, double-masked, sham-controlled, phase 3 study (ILLUMINATE). Invest. Ophthalmol. Vis. Sci. 63, 4536-F0323 (2022).

    Google Scholar 

  • Ammar, M. J., Hsu, J., Chiang, A., Ho, A. C. & Regillo, C. D. Age-related macular degeneration therapy: a review. Curr. Opin. Ophthalmol. 31, 215–221 (2020).

    Article  Google Scholar 

  • Goldberg, R. et al. Efficacy of intravitreal pegcetacoplan in patients with geographic atrophy (GA): 12-month results from the phase 3 OAKS and DERBY studies. Invest. Ophthalmol. Vis. Sci. 63, 1500–1500 (2022).

    Google Scholar 

  • Shen, J. et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 6, eaba1606 (2020).

    Article  CAS  Google Scholar 

  • Tan, G. et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater. 134, 605–620 (2021).

    Article  CAS  Google Scholar 

  • Jin, J. et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Investig. Opthalmol. Vis. Sci. 52, 6230 (2011).

    CAS  Google Scholar 

  • Keenan, T. D. L., Cukras, C. A. & Chew, E. Y. Age-related macular degeneration: epidemiology and clinical aspects. Adv. Exp. Med. Biol. 1256, 1–31 (2021).

    Article  CAS  Google Scholar 

  • Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).

    Article  CAS  Google Scholar 

  • Mirjalili Mohanna, S. Z. et al. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J. Control. Release 350, 401–413 (2022).

    CAS  Google Scholar 

  • Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    CAS  Google Scholar 

  • Sun, D. et al. Non-viral gene therapy for stargardt disease with ECO/pRHO-ABCA4 self-assembled nanoparticles. Mol. Ther. 28, 293–303 (2020).

    Article  CAS  Google Scholar 

  • Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    Article  Google Scholar 

  • Huertas, A. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur. Respir. J. 51, 1700745 (2018).

    Article  Google Scholar 

  • Hong, K.-H. et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    Article  CAS  Google Scholar 

  • Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  CAS  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). This groundbreaking study found that incorporating differently charged (SORT) lipids into the conventional four-component LNPs shifts the location of mRNA transfection among the liver, spleen and lungs.

    Article  CAS  Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021). This work thoroughly investigated the impact of SORT lipids added to LNPs on the formation of the biomolecular corona on the NP surface and its role in achieving organ-specific transfection.

    Article  CAS  Google Scholar 

  • Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J. Control. Release https://doi.org/10.1016/j.jconrel.2023.03.052 (2023).

  • Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  CAS  Google Scholar 

  • Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55, 13808–13812 (2016).

    Article  CAS  Google Scholar 

  • Shen, A. M. & Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J. Control. Release 326, 222–244 (2020).

    CAS  Google Scholar 

  • Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    Article  CAS  Google Scholar 

  • Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

    CAS  Google Scholar 

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  Google Scholar 

  • Qiu, Y. et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control. Release 314, 102–115 (2019).

    CAS  Google Scholar 

  • Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    Article  CAS  Google Scholar 

  • Telko, M. J. & Hickey, A. J. Dry powder inhaler formulation. Respir. Care 50, 1209 (2005).

    Google Scholar 

  • Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

  • Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article  CAS  Google Scholar 

  • Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, e1601556 (2017).

    Article  Google Scholar 

  • Wang, J. et al. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 367, eaau0810 (2020).

    Article  CAS  Google Scholar 

  • Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545–556 (2010).

    Article  CAS  Google Scholar 

  • Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article  CAS  Google Scholar 

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  CAS  Google Scholar 

  • Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  Google Scholar 

  • Bevers, S. et al. mRNA–LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article  CAS  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  Google Scholar 

  • Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article  Google Scholar 

  • Zhao, X. et al. Imidazole‐based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020).

    Article  CAS  Google Scholar 

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    CAS  Google Scholar 

  • McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article  Google Scholar 

  • McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    Article  CAS  Google Scholar 

  • Ben-Akiva, E. et al. Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc. Natl Acad. Sci. USA 120, e2301606120 (2023).

    Article  Google Scholar 

  • Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA–LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article  Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  Google Scholar 

  • Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 170, 83–112 (2021).

    Article  CAS  Google Scholar 

  • Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019). This pioneering study delved into the biodistribution of lipid-based mRNA vaccines after their intramuscular injection into non-human primates using a dual radionuclide–near-infrared probe.

    Article  CAS  Google Scholar 

  • Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    Article  CAS  Google Scholar 

  • Assessment Report: Comirnaty EMA/707383/2020 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  • Assessment Report: COVID-19 Vaccine Moderna EMA/15689/2021 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  • Ke, X. et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Deliv. Rev. 151–152, 72–93 (2019).

    Article  Google Scholar 

  • Hansen, K. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

    Article  CAS  Google Scholar 

  • Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article  CAS  Google Scholar 

  • Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021).

    Article  CAS  Google Scholar 

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  Google Scholar 

  • Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding rna elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010).

    Article  CAS  Google Scholar 

  • Fan, C.-H. et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood–brain barrier opening and local gene delivery. Biomaterials 106, 46–57 (2016).

    Article  CAS  Google Scholar 

  • Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44 (2011).

    Article  Google Scholar 

  • Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–brain barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154 (2014).

    Article  Google Scholar 

  • Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    Article  CAS  Google Scholar 

  • Ullman, J. C. et al. Brain delivery and activity of a lysosomal enzyme using a blood–brain barrier transport vehicle in mice. Sci. Transl. Med. 12, eaay1163 (2020).

    Article  CAS  Google Scholar 

  • Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020). This study suggests that designing lipids to mimic neurotransmitters and incorporating them into NPs can enhance the delivery of nucleic acids and proteins to the brain following IV injection.

    Article  CAS  Google Scholar 

  • Zhou, Y. et al. Blood–brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    Article  CAS  Google Scholar 

  • Li, W. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    Article  CAS  Google Scholar 

  • Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    Article  Google Scholar 

  • Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    Article  CAS  Google Scholar 

  • Kim, M. et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J. Control. Release 350, 471–485 (2022).

    CAS  Google Scholar 

  • Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338 (2007).

    Article  CAS  Google Scholar 

  • Saucier-Sawyer, J. K. et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J. Control. Release 232, 103–112 (2016).

    Article  CAS  Google Scholar 

  • Dhaliwal, H. K., Fan, Y., Kim, J. & Amiji, M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm. 17, 1996–2005 (2020).

    Article  CAS  Google Scholar 

  • Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  Google Scholar 

  • Hirabayashi, H. & Fujisaki, J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin. Pharmacokinet. 42, 1319–1330 (2003).

    Article  CAS  Google Scholar 

  • Wang, G., Mostafa, N. Z., Incani, V., Kucharski, C. & Uludağ, H. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. J. Biomed. Mater. Res. A 100, 684–693 (2012).

    Article  Google Scholar 

  • Giger, E. V. et al. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. J. Control. Release 150, 87–93 (2011).

    CAS  Google Scholar 

  • Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022). This study proposes that improving lipid design to mimic bisphosphates can improve LNP-mediated mRNA delivery to the bone microenvironment after IV injection.

    Article  CAS  Google Scholar 

  • Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 21, 288–294 (2015).

    Article  Google Scholar 

  • Zhang, Y., Wei, L., Miron, R. J., Shi, B. & Bian, Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J. Bone Miner. Res. 30, 286–296 (2015).

    Article  CAS  Google Scholar 

  • Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    Article  Google Scholar 

  • Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    CAS  Google Scholar 

  • Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article  CAS  Google Scholar 

  • Zhang, X., Li, Y., Chen, Y. E., Chen, J. & Ma, P. X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 7, 10376 (2016).

    Article  CAS  Google Scholar 

  • Wang, P. et al. In vivo bone tissue induction by freeze-dried collagen–nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J. Control. Release 334, 188–200 (2021).

    CAS  Google Scholar 

  • Athirasala, A. et al. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomed. Nanotechnol. Biol. Med. 42, 102550 (2022).

    Article  CAS  Google Scholar 

  • Nims, R. J., Pferdehirt, L. & Guilak, F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr. Opin. Biotechnol. 73, 374–379 (2022).

    Article  CAS  Google Scholar 

  • O’Driscoll, C. M., Bernkop-Schnürch, A., Friedl, J. D., Préat, V. & Jannin, V. Oral delivery of non-viral nucleic acid-based therapeutics—do we have the guts for this? Eur. J. Pharm. Sci. 133, 190–204 (2019).

    Article  Google Scholar 

  • Ball, R. L., Bajaj, P. & Whitehead, K. A. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci. Rep. 8, 2178 (2018).

    Article  Google Scholar 

  • Attarwala, H., Han, M., Kim, J. & Amiji, M. Oral nucleic acid therapy using multi-compartmental delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1478 (2018).

    Article  Google Scholar 

  • Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  CAS  Google Scholar 

  • Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022). This study shows the potential for delivery of mRNA-loaded PBAE NPs directly to the submucosa of the stomach using orally ingested robotic pills.

    Article  CAS  Google Scholar 

  • Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  Google Scholar 

  • Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    Article  CAS  Google Scholar 

  • Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article  CAS  Google Scholar 

  • Tang, R., Long, T., Lui, K. O., Chen, Y. & Huang, Z.-P. A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol. Ther. Nucleic Acids 20, 673–686 (2020).

    Article  CAS  Google Scholar 

  • Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  Google Scholar 

  • Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  CAS  Google Scholar 

  • Täubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article  Google Scholar 

  • Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article  CAS  Google Scholar 

  • Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article  CAS  Google Scholar 

  • Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article  CAS  Google Scholar 

  • Rubin, J. D. & Barry, M. A. Improving molecular therapy in the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    Article  Google Scholar 

  • Oroojalian, F. et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Control. Release 321, 442–462 (2020).

    CAS  Google Scholar 

  • Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    Article  CAS  Google Scholar 

  • Xu, Y. et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J. Am. Chem. Soc. 144, 23522–23533 (2022).

    Article  CAS  Google Scholar 

  • Stribley, J. M., Rehman, K. S., Niu, H. & Christman, G. M. Gene therapy and reproductive medicine. Fertil. Steril. 77, 645–657 (2002).

    Article  Google Scholar 

  • Boekelheide, K. & Sigman, M. Is gene therapy for the treatment of male infertility feasible? Nat. Clin. Pract. Urol. 5, 590–593 (2008).

    Article  CAS  Google Scholar 

  • Rodríguez-Gascón, A., del Pozo-Rodríguez, A., Isla, A. & Solinís, M. A. Vaginal gene therapy. Adv. Drug Deliv. Rev. 92, 71–83 (2015).

    Article  Google Scholar 

  • Lindsay, K. E. et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol. Ther. 28, 805–819 (2020).

    Article  CAS  Google Scholar 

  • Poley, M. et al. Nanoparticles accumulate in the female reproductive system during ovulation affecting cancer treatment and fertility. ACS Nano 16, 5246–5257 (2022).

    CAS  Google Scholar 

  • DeWeerdt, S. Prenatal gene therapy offers the earliest possible cure. Nature 564, S6–S8 (2018).

    Article  CAS  Google Scholar 

  • Palanki, R., Peranteau, W. H. & Mitchell, M. J. Delivery technologies for in utero gene therapy. Adv. Drug Deliv. Rev. 169, 51–62 (2021).

    Article  CAS  Google Scholar 

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, 1028–1041 (2021).

    Article  Google Scholar 

  • Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    CAS  Google Scholar 

  • Ricciardi, A. S. et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 9, 2481 (2018). This study presents in utero gene editing of a disease-causing β-thalassemia mutation in foetal mice.

    Article  Google Scholar 

  • Chaudhary, N. et al. Lipid nanoparticle structure and delivery route during pregnancy dictates mRNA potency, immunogenicity, and health in the mother and offspring. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528720 (2023).

  • Young, R. E. et al. Lipid nanoparticle composition drives mRNA delivery to the placenta. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521490 (2022).

  • Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    Article  CAS  Google Scholar 

  • Lan, Y. et al. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther. 27, 329–337 (2020).

    CAS  Google Scholar 

  • Delmaghani, S. & El-Amraoui, A. Inner ear gene therapies take off: current promises and future challenges. J. Clin. Med. 9, 2309 (2020).

    Article  CAS  Google Scholar 

  • Wang, L., Kempton, J. B. & Brigande, J. V. Gene therapy in mouse models of deafness and balance dysfunction. Front. Mol. Neurosci. 11, 300 (2018).

    Article  CAS  Google Scholar 

  • Du, X. et al. Regeneration of cochlear hair cells and hearing recovery through Hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol. Ther. 26, 1313–1326 (2018).

    Article  CAS  Google Scholar 

  • Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    Article  CAS  Google Scholar 

  • Jero, J. et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum. Gene Ther. 12, 539–548 (2001).

    CAS  Google Scholar 

  • Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  Google Scholar 

  • El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018).

    CAS  Google Scholar 

  • Hansen, A. E. et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    CAS  Google Scholar 

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article  CAS  Google Scholar 

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). This Review deeply explores the possible factors behind the ineffective tumour-targeting of NPs, uncovering that only a small fraction of the administered NP dose reaches a solid tumour.

    Article  CAS  Google Scholar 

  • Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2012).

    Article  CAS  Google Scholar 

  • Chan, W. C. W. Principles of nanoparticle delivery to solid tumors. BME Front. 4, 0016 (2023). This Review delineates key principles for designing tumour-targeting NPs, considering both macro- and micro-level analysis of the environment surrounding NPs and their physicochemical attributes.

    Article  CAS  Google Scholar 

  • Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    CAS  Google Scholar 

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  CAS  Google Scholar 

  • Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article  CAS  Google Scholar 

  • Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article  CAS  Google Scholar 

  • Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article  CAS  Google Scholar 

  • Van Lint, S. et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol. Res. 4, 146–156 (2016).

    Article  Google Scholar 

  • Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS  Google Scholar 

  • Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Release 357, 394–403 (2023).

    CAS  Google Scholar 

  • Vetter, V. C. & Wagner, E. Targeting nucleic acid-based therapeutics to tumors: challenges and strategies for polyplexes. J. Control. Release 346, 110–135 (2022).

    CAS  Google Scholar 

  • Yong, S. et al. Dual‐targeted lipid nanotherapeutic boost for chemo‐immunotherapy of cancer. Adv. Mater. 34, 2106350 (2022).

    Article  CAS  Google Scholar 

  • Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018). This study developed a modular, ligand-based RNA delivery platform that avoids the chemical conjugation of antibodies by using linkers that bind to the Fc region, ensuring precise antibody orientation on the NP surface.

    Article  CAS  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Adachi, K., Enoki, T., Kawano, Y., Veraz, M. & Nakai, H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5, 3075 (2014).

    Article  Google Scholar 

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017). This work presents the remarkable capabilities of DNA barcoding and deep sequencing in conducting high-throughput screening of NPs, assessing their effectiveness in target-specific gene delivery in vivo.

    Article  CAS  Google Scholar 

  • Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).

    Google Scholar 

  • Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    CAS  Google Scholar 

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  CAS  Google Scholar 

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  Google Scholar 

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  • Keenum, M. C. et al. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 297, 122097 (2023).

    Article  CAS  Google Scholar 

  • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article  CAS  Google Scholar 

  • Rao, N., Clark, S. & Habern, O. Bridging genomics and tissue pathology: 10x Genomics explores new frontiers with the Visium Spatial Gene Expression Solution. Genet. Eng. Biotechnol. News 40, 50–51 (2020).

    Article  Google Scholar 

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article  CAS  Google Scholar 

  • Shao, D. et al. HBFP: a new repository for human body fluid proteome. Database 2021, baab065 (2021).

    Article  CAS  Google Scholar 

  • Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    Article  CAS  Google Scholar 

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  CAS  Google Scholar 

  • Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    Article  CAS  Google Scholar 

  • Xu, Y. et al. AGILE platform: a deep learning-powered approach to accelerate LNP development for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543345 (2023). This work implements artificial intelligence in ionizable lipid design for intramuscular mRNA delivery.

  • Gong, D. et al. Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomater. 154, 349–358 (2022).

    Article  CAS  Google Scholar 

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article  CAS  Google Scholar 

  • Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article  CAS  Google Scholar 

  • Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    CAS  Google Scholar 

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article  Google Scholar 

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article  Google Scholar 

  • De Backer, L., Cerrada, A., Pérez-Gil, J., De Smedt, S. C. & Raemdonck, K. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J. Control. Release 220, 642–650 (2015).

    Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology