Targeting initial tumour–osteoclast spatiotemporal interaction to prevent bone metastasis - Nature Nanotechnology

Targeting initial tumour–osteoclast spatiotemporal interaction to prevent bone metastasis – Nature Nanotechnology

Source Node: 2522449
  • Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Prim. 6, 83 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von Moos, R. et al. Management of bone health in solid tumours: from bisphosphonates to a monoclonal antibody. Cancer Treat. Rev. 76, 57–67 (2019).

    Article 

    Google Scholar
     

  • Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Croucher, P. I., McDonald, M. M. & Martin, T. J. Bone metastasis: the importance of the neighbourhood. Nat. Rev. Cancer 16, 373–386 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta Stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesh, K. & Massagué, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Y., Xu, J. & Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244 (2001).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chen, Q., Zhang, X. H. & Massagué, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tsilimigras, D. I. et al. Liver metastases. Nat. Rev. Dis. Prim. 7, 27 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hofbauer, L. C. et al. Novel approaches to target the microenvironment of bone metastasis. Nat. Rev. Clin. Oncol. 18, 488–505 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Satcher, R. L. & Zhang, X. H. F. Evolving cancer–niche interactions and therapeutic targets during bone metastasis. Nat. Rev. Cancer 22, 85–101 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ell, B. & Kang, Y. SnapShot: bone metastasis. Cell 151, 690 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, K. et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat. Commun. 12, 5196 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lin, X. et al. Smart nanosacrificial layer on the bone surface prevents osteoporosis through acid-base neutralization regulated biocascade effects. J. Am. Chem. Soc. 142, 17543–17556 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin, D. D. Binding of tetracyclines to bone. Nature 208, 787–788 (1965).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1330–1347 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ell, B. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542–5556 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, H. et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184, 2896–2910 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa, T. et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol. 20, 1631–1643 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaffer, C. L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Morel, A. P. et al. A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat. Med. 23, 568–578 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo, K. et al. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184–187 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat. Commun. 13, 2011 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Miyazaki, T., Miyauchi, S., Anada, T., Imaizumi, H. & Suzuki, O. Evaluation of osteoclastic resorption activity using calcium phosphate coating combined with labeled polyanion. Anal. Biochem. 410, 7–12 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat. Commun. 8, 15045 (2017).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  • Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci USA 102, 15545–15550 (2005).

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

  • Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

  • Tang, R. et al. Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging. Breast Cancer Res. Treat. 139, 311–316 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Time Stamp:

    More from Nature Nanotechnology