A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion - Nature Nanotechnology

A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion – Nature Nanotechnology

Source Node: 2481338
  • Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63–e63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenburg, O., Williams, C. H., Stemple, D. L. & Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 4, e204 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333 (2021).

  • Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marras, S. A., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122–e122 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A. DNA–silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 10, 3106–3110 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  • O’Neill, P. R., Gwinn, E. G. & Fygenson, D. K. UV excitation of DNA stabilized Ag cluster fluorescence via the DNA bases. J. Phys. Chem. C 115, 24061–24066 (2011).

    Article  Google Scholar 

  • Petty, J. T., Zheng, J., Hud, N. V. & Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yeh, H.-C. et al. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 134, 11550–11558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blevins, M. S. et al. Footprints of nanoscale DNA–silver cluster chromophores via activated-electron photodetachment mass spectrometry. ACS Nano 13, 14070–14079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copp, S. M. et al. Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors. J. Phys. Chem. Lett. 5, 959–963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, C., Goodwin, P. M., Yunus, A. I., Dickson, R. M. & Petty, J. T. A split DNA scaffold for a green fluorescent silver cluster. J. Phys. Chem. C 123, 17588–17597 (2019).

    Article  CAS  Google Scholar 

  • Schultz, D. et al. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 25, 2797–2803 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Petty, J. T. et al. Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors. Anal. Chem. 84, 356–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. et al. CRISPR/Cas precisely regulated DNA-templated silver nanocluster fluorescence sensor for meat adulteration detection. J. Agric. Food Chem. 70, 14296–14303 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. Y., Park, K. S., Jung, Y. K. & Park, H. G. A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens. Bioelectron. 93, 293–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kuo, Y. A. et al. Massively parallel selection of nanocluster beacons. Adv. Mater. 34, e2204957 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y.-A. et al. Nanocluster beacons enable detection of a single N6-methyladenine. J. Am. Chem. Soc. 137, 10476–10479 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Obliosca, J. M. et al. A complementary palette of nanocluster beacons. ACS Nano 8, 10150–10160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerretani, C., Kanazawa, H., Vosch, T. & Kondo, J. Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster. Angew. Chem. Int. Ed. 58, 17153–17157 (2019).

    Article  CAS  Google Scholar 

  • Petty, J. T. et al. A DNA-encapsulated silver cluster and the roles of its nucleobase ligands. J. Phys. Chem. C 122, 28382–28392 (2018).

    Article  CAS  Google Scholar 

  • Koszinowski, K. & Ballweg, K. A highly charged Ag64+ core in a DNA‐encapsulated silver nanocluster. Chem. Eur. J. 16, 3285–3290 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rosell, A. et al. Chloride ligands on DNA-stabilized silver nanoclusters. J. Am. Chem. Soc. 145, 10721–10729 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huard, D. J. et al. Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold. J. Am. Chem. Soc. 141, 11465–11470 (2018).

    Article  Google Scholar 

  • Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cong, X. et al. Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article  CAS  PubMed  Google Scholar 

  • McCabe, J. W. et al. Variable-temperature electrospray ionization for temperature-dependent folding/refolding reactions of proteins and ligand binding. Anal. Chem. 93, 6924–6931 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran, A. & Santiago, J. G. CRISPR enzyme kinetics for molecular diagnostics. Anal. Chem. 93, 7456–7464 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L. T., Smith, B. M. & Jain, P. K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat. Commun. 11, 4906 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalefski, E. A. et al. Kinetic analysis of Cas12a and Cas13a RNA-guided nucleases for development of improved CRISPR-based diagnostics. iScience 24, 102996 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A beacon of light. IEEE Nanotechnol. Mag. 5, 28–33 (2011).

    Article  Google Scholar 

  • Juul, S. et al. Nanocluster beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale 7, 8332–8337 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, L., Sun, X., Hong, Q. & Li, F. Ratiometric nanocluster beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl. Mater. Interfaces 9, 13102–13110 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Suo, T. et al. A versatile turn-on fluorometric biosensing profile based on split aptamers-involved assembly of nanocluster beacon sandwich. Sens. Actuators B 324, 128586 (2020).

    Article  CAS  Google Scholar 

  • Gwinn, E., Schultz, D., Copp, S. M. & Swasey, S. DNA-protected silver clusters for nanophotonics. Nanomaterials 5, 180–207 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou, X., Kang, X. & Zhu, M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem. Soc. Rev. 52, 5892–5967 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Leytus, S. P., Melhado, L. L. & Mangel, W. F. Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hu, Q. et al. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat. Chem. 16, 122–131 (2023).

    Article  PubMed  Google Scholar 

  • Fort, K. L. et al. Implementation of ultraviolet photodissociation on a benchtop Q exactive mass spectrometer and its application to phosphoproteomics. Anal. Chem. 88, 2303–2310 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Sanders, J. D. et al. Enhanced ion mobility separation and characterization of isomeric phosphatidylcholines using absorption mode Fourier transform multiplexing and ultraviolet photodissociation mass spectrometry. Anal. Chem. 94, 4252–4259 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology