Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites

Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites

Source Node: 1923001
  • Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  • Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  • Zhu, H., Miyata, K., Fu, Y., Wang, J. & Joshi, P. P. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1414 (2016).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  CAS  Google Scholar 

  • Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  Google Scholar 

  • Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  Google Scholar 

  • Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  CAS  Google Scholar 

  • Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  CAS  Google Scholar 

  • Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  CAS  Google Scholar 

  • Zheng, F. & Wang, L. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ. Sci. 12, 1219–1230 (2019).

    Article  CAS  Google Scholar 

  • Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  Google Scholar 

  • Puppin, M. et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).

    Article  CAS  Google Scholar 

  • Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article  CAS  Google Scholar 

  • Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  Google Scholar 

  • Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Article  Google Scholar 

  • Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    Article  CAS  Google Scholar 

  • Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article  Google Scholar 

  • Hoque, M. N. F. et al. Polarization and dielectric study of methylammonium lead iodide thin film to reveal its nonferroelectric nature under solar cell operating conditions. ACS Energy Lett. 1, 142–149 (2016).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

    Article  CAS  Google Scholar 

  • Schulz, A. D. et al. On the ferroelectricity of CH3NH3PbI3 perovskites. Nat. Mater. 18, 1050 (2019).

    Article  CAS  Google Scholar 

  • Miyata, K. & Zhu, X.-Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    Article  CAS  Google Scholar 

  • Wang, F. et al. Solvated electrons in solids—ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).

    Article  CAS  Google Scholar 

  • Huang, H. Ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).

  • Morris, M. R., Pendlebury, S. R., Hong, J., Dunn, S. & Durrant, J. R. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv. Mater. 28, 7123–7128 (2016).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  Google Scholar 

  • Zhang, J., Li, C., Chen, M. & Huang, K. Real-time observation of ion migration in halide perovskite by photoluminescence imaging microscopy. J. Phys. D 54, 044002 (2021).

  • Zhang, T. et al. Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: a fresh perspective from halide substitution. Nano Energy 26, 620–630 (2016).

    Article  CAS  Google Scholar 

  • Zhong, Y., Hufnagel, M., Thelakkat, M., Li, C. & Huettner, S. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Funct. Mater. 30, 1908920 (2020).

    Article  CAS  Google Scholar 

  • Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  CAS  Google Scholar 

  • Tsai, H. et al. A sensitive and robust thin-film X-ray detector using 2D-layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).

  • Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  • Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Article  Google Scholar 

  • Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article  CAS  Google Scholar 

  • Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  • Schlaus, A. P. et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019).

    Article  Google Scholar 

  • Miyata, K. et al. Liquid-like dielectric response is an origin of long polaron lifetime exceeding 10 μs in lead bromide perovskites. J. Chem. Phys. 152, 084704 (2020).

    Article  CAS  Google Scholar 

  • Abdelkefi, H., Khemakhem, H., Vélu, G., Carru, J. C. & Von der Mühll, R. Dielectric properties and ferroelectric phase transitions in BaxSr1−xTiO3 solid solution. J. Alloys Compd 399, 1–6 (2005).

  • Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

    Article  CAS  Google Scholar 

  • Wilson, J. N., Frost, J. M., Wallace, S. K. & Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 010901 (2019).

    Article  Google Scholar 

  • Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).

    Article  CAS  Google Scholar 

  • Glazounov, A. E. & Tagantsev, A. K. Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 73, 856–858 (1998).

    Article  CAS  Google Scholar 

  • Viehland, D., Li, J. F., Jang, S. J., Cross, L. E. & Wuttig, M. Dipolar-glass model for lead magnesium niobate. Phys. Rev. B 43, 8316–8320 (1991).

    Article  CAS  Google Scholar 

  • Westphal, V., Kleemann, W. & Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).

    Article  CAS  Google Scholar 

  • Krogstad, M. J. et al. The relation of local order to material properties in relaxor ferroelectrics. Nat. Mater. 17, 718–724 (2018).

    Article  CAS  Google Scholar 

  • Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).

    Article  CAS  Google Scholar 

  • Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 13, 10239–10265 (2021).

    Article  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  • Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

  • Kang, B. & Biswas, K. Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3. J. Phys. Chem. Lett. 9, 830–836 (2018).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology