Actively tunable laser action in GeSn nanomechanical oscillators - Nature Nanotechnology

Actively tunable laser action in GeSn nanomechanical oscillators – Nature Nanotechnology

Source Node: 2561328
  • Choi, J.-H. et al. A high-resolution strain-gauge nanolaser. Nat. Commun. 7, 11569 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shim, E. et al. Tunable single-mode chip-scale mid-infrared laser. Commun. Phys. 4, 268 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xin, M. et al. Optical frequency synthesizer with an integrated erbium tunable laser. Light Sci. Appl. 8, 122 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A nanoelectromechanical tunable laser. Nat. Photon. 2, 180–184 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueda, Y., Shindo, T., Kanazawa, S., Fujiwara, N. & Ishikawa, M. Electro-optically tunable laser with ultra-low tuning power dissipation and nanosecond-order wavelength switching for coherent networks. Optica 7, 1003–1006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andreou, S., Williams, K. A. & Bente, E. A. J. M. Electro-optic tuning of a monolithically integrated widely tuneable InP laser with free-running and stabilized operation. J. Lightwave Technol. 38, 1887–1894 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 458, 1001–1004 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, N. et al. Time-domain control of ultrahigh-frequency nanomechanical systems. Nat. Nanotechnol. 3, 715–719 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114–120 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, S., Magyari-Köpe, B., Nishi, Y. & Saraswat, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 113, 073707 (2013).

    Article 

    Google Scholar
     

  • Burt, D. et al. Direct bandgap GeSn nanowires enabled with ultrahigh tension from harnessing intrinsic compressive strain. Appl. Phys. Lett. 120, 202103 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Burt, D. et al. Strain-relaxed GeSn-on-insulator (GeSnOI) microdisks. Opt. Express 29, 28959–28967 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutt, B. et al. Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser. IEEE J. Sel. Topics Quantum Electron. 19, 1502706 (2013).

    Article 

    Google Scholar
     

  • Nam, D. et al. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 13, 3118–3123 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, H.-J. et al. 1D photonic crystal direct bandgap GeSn-on-insulator laser. Appl. Phys. Lett. 119, 201101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Ultrafast detection of terahertz radiation with miniaturized optomechanical resonator driven by dielectric driving force. ACS Photonics 9, 1541–1546 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tran, H. et al. Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys. 119, 103106 (2016).

    Article 

    Google Scholar
     

  • Brian Sia, J. X. et al. Sub-kHz linewidth, hybrid III-V/silicon wavelength-tunable laser diode operating at the application-rich 1647-1690 nm. Opt. Express 28, 25215–25224 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chu, T., Fujioka, N. & Ishizaka, M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators. Opt. Express 17, 14063–14068 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Express 15, 1222–1227 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, D. & Vollmer, F. Active optomechanics. Commun. Phys. 5, 61 (2022).

    Article 

    Google Scholar
     

  • Czerniuk, T. et al. Lasing from active optomechanical resonators. Nat. Commun. 5, 4038 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyubarov, M. et al. Amplified emission and lasing in photonic time crystals. Science 377, 425–428 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaidarzhy, A., Zolfagharkhani, G., Badzey, R. L. & Mohanty, P. Spectral response of a gigahertz-range nanomechanical oscillator. Appl. Phys. Lett. 86, 254103 (2005).

    Article 

    Google Scholar
     

  • Time Stamp:

    More from Nature Nanotechnology