Complete miscibility of immiscible elements at the nanometre scale - Nature Nanotechnology

Complete miscibility of immiscible elements at the nanometre scale – Nature Nanotechnology

Source Node: 2500927
  • Xie, C. L. et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, R. J. et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 376, 615–620 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 369, 427–432 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, P. J. et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373, 912–918 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Q. F. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, N. R. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrar, M. & Skrabalak, S. E. Designer plasmonic nanostructures for unclonable anticounterfeit tags. Small Struct. 2, 2100043 (2021).

    Article 

    Google Scholar
     

  • Jiang, B. B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pendharkar, M. et al. Parity-preserving and magnetic field-resilient superconductivity in InSb nanowires with Sn shells. Science 372, 508–511 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamoto, H., Schlesinger, M. E. & Mueller, E. M. (eds) Binary Alloy Phase Diagrams (ASM International, 2016).

  • Loffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article 

    Google Scholar
     

  • Kusada, K. et al. Nonequilibrium flow-synthesis of solid-solution alloy nanoparticles: from immiscible binary to high-entropy alloys. J. Phys. Chem. C 125, 458–463 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. F. et al. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 6, 231–237 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. Y. et al. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 17, 5526–5532 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. C. et al. Interface and heterostructure design in polyelemental nanoparticles. Science 363, 959–964 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. C. et al. Chain-end functionalized polymers for the controlled synthesis of sub-2 nm particles. J. Am. Chem. Soc. 142, 7350–7355 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccolo, L. et al. Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Sci. Rep. 6, 35226 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P.-C. et al. Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 10116–10125 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, C. L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, G. et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buendia, F., Vargas, J. A., Johnston, R. L. & Beltran, M. R. Study of the stability of small AuRh clusters found by a genetic algorithm methodology. Comput. Theor. Chem. 1119, 51–58 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rahm, J. M. & Erhart, P. Understanding chemical ordering in bimetallic nanoparticles from atomic-scale simulations: the competition between bulk, surface, and strain. J. Phys. Chem. C 122, 28439–28445 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, A., Stoltze, P. & Norskov, J. K. Size dependence of phase-separation in small bimetallic clusters. J. Phys. Condens. Matter 7, 1047–1057 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fevre, M., Le Bouar, Y. & Finel, A. Thermodynamics of phase-separating nanoalloys: single particles and particle assemblies. Phys. Rev. B 97, 195404 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srivastava, C., Chithra, S., Malviya, K. D., Sinha, S. K. & Chattopadhyay, K. Size dependent microstructure for Ag-Ni nanoparticles. Acta Mater. 59, 6501–6509 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kusada, K., Yamauchi, M., Kobayashi, H., Kitagawa, H. & Kubota, Y. Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J. Am. Chem. Soc. 132, 15896–15898 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 9, 510 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Wang, L., Lu, L. & Toshima, N. Preparation and catalytic activity for aerobic glucose oxidation of crown jewel structured Pt/Au bimetallic nanoclusters. Sci. Rep. 6, 30752 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toshima, N. & Hirakawa, K. Polymer-protected bimetallic nanocluster catalysts having core/shell structure for accelerated electron transfer in visible-light-induced hydrogen generation. Polym. J. 31, 1127–1132 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Toshima, N. & Yonezawa, T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Meischein, M. et al. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids. Nanoscale Adv. 4, 3855–3869 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajeeva, B. B. et al. Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys. Matter 1, 1606–1617 (2019).

    Article 

    Google Scholar
     

  • Feng, J. C. et al. Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter 3, 1646–1663 (2020).

    Article 

    Google Scholar
     

  • Qi, W. H. & Wang, M. P. Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 21, 1743–1745 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, S. Y., Qi, W. H., Huang, B. Y. & Wang, M. P. Size-, shape- and composition-dependent alloying ability of bimetallic nanoparticles. ChemPhysChem 12, 1317–1324 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, W. H., Huang, B. Y. & Wang, M. P. Size and shape-dependent formation enthalpy of binary alloy nanoparticles. Phys. B 404, 1761–1765 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sneed, B. T., Young, A. P. & Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–12265 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrando, R. Structure and Properties of Nanoalloys (Elsevier, 2016).

  • Chen, P. C. et al. Revealing the phase separation behavior of thermodynamically immiscible elements in a nanoparticle. Nano Lett. 21, 6684–6689 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohlberg, K., Pennycook, T. J., Zhou, W. & Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 17, 3982–4006 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanzan, M., Jones, R. M., Corni, S., D’Agosta, R. & Baletto, F. Exploring AuRh nanoalloys: a computational perspective on the formation and physical properties. ChemPhysChem 23, e202200035 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valizadeh, Z. & Abbaspour, M. Surface energy, relative stability, and structural properties of Au-Pt, Au-Rh, Au-Cu, and Au-Pd nanoclusters created in inert-gas condensation process using MD simulation. J. Phys. Chem. Solids 144, 109480 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis, Arizona State Univ. (2002).

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Time Stamp:

    More from Nature Nanotechnology