Building biomaterials through genetic code expansion

Building biomaterials through genetic code expansion

Source Node: 1894875
    • Bischoff R.
    • Schlüter H.

    Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications.

    J. Proteome. 2012; 75: 2275-2296

    • Liu X.
    • et al.

    Photo-cleavable purification/protection handle assisted synthesis of giant modified proteins with tandem repeats.

    Chem. Sci. 2019; 10: 8694

    • Pena-Francesch A.
    • et al.

    Mechanical properties of tandem-repeat proteins are governed by network defects.

    ACS Biomater. Sci. Eng. 2018; 4: 884-891

  • Processing of collagen based biomaterials and the resulting materials properties.

    Biomed. Eng. Online. 2019; 18: 24

    • Ilamaran M.
    • et al.

    A self-assembly and higher order structure forming triple helical protein as a novel biomaterial for cell proliferation.

    Biomater. Sci. 2019; 7: 2191-2199

    • Lajoie M.J.
    • et al.

    Overcoming challenges in engineering the genetic code.

    J. Mol. Biol. 2016; 428: 1004-1021

    • Zhao N.
    • et al.

    A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo.

    Nat. Commun. 2019; 10: 2947

    • Yang B.
    • et al.

    In vivo residue-specific DOPA-incorporated engineered mussel bioglue with enhanced adhesion and water resistance.

    Angew. Chem. Int. Ed. Engl. 2014; 53: 13360-13364

    • Hauf M.
    • et al.

    Photoactivatable mussel-based underwater adhesive proteins by an expanded genetic code.

    Chembiochem. 2017; 18: 1819-1823

    • Smolskaya S.
    • Andreev Y.A.

    Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: methodology development and recent achievement.

    Biomolecules. 2019; 9: 255

  • Expanding and reprogramming the genetic code.

    Nature. 2017; 550: 53-60

    • Ros E.
    • et al.

    Learning from nature to expand the genetic code.

    Trends Biotechnol. 2021; 39: 460-473

    • Mukai T.
    • et al.

    Rewriting the genetic code.

    Annu. Rev. Microbiol. 2017; 71: 557-577

    • Merkel L.
    • Budisa N.

    Organic fluorine as a polypeptide building element: In vivo expression of fluorinated peptides, proteins and proteomes.

    Org. Biomol. Chem. 2012; 10: 7241-7261

    • Ta D.T.
    • et al.

    Bioorthogonal elastin-like polypeptide scaffolds for immunoassay enhancement.

    ACS Appl. Mater. Interfaces. 2018; 10: 30147-30154

    • Radhakrishnan J.
    • et al.

    Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    Biomaterials. 2018; 162: 82-98

    • Radhakrishnan J.
    • et al.

    Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering.

    Biomacromolecules. 2017; 18: 1-26

    • Perret S.
    • et al.

    Unhydroxylated triple helical collagen I produced in transgenic plants provides new clues on the role of hydroxyproline in collagen folding and fibril formation.

    J. Biol. Chem. 2001; 276: 43693-43698

    • Wang Q.
    • et al.

    Expanding the genetic code for biological studies.

    Chem. Biol. 2009; 16: 323-336

    • Korendovych I.V.

    Rational and semirational protein design.

    Methods Mol. Biol. 2018; 1685: 15-23

    • Kim C.H.
    • et al.

    Protein conjugation with genetically encoded unnatural amino acids.

    Curr. Opin. Chem. Biol. 2013; 17: 412-419

    • Gubbens J.
    • et al.

    In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs.

    RNA. 2010; 16: 1660-1672

    • Hartman M.C.T.
    • et al.

    Enzymatic aminoacylation of tRNA with unnatural amino acids.

    Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 4356-4361

    • Williams T.L.
    • et al.

    Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency.

    Amino Acids. 2021; 53: 89-96

    • Neumann H.
    • et al.

    Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.

    Nature. 2010; 464: 441-444

    • Wan W.
    • et al.

    A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli.

    Angew. Chem. Int. Ed. Engl. 2010; 49: 3211-3214

    • de la Torre D.
    • Chin J.W.

    Reprogramming the genetic code.

    Nat. Rev. Genet. 2021; 22: 169-184

    • Jewel D.
    • Chatterjee A.

    Rewriting the genetic code.

    Science. 2021; 372: 1040-1041

    • Lee J.
    • et al.

    Expanding the limits of the second genetic code with ribozymes.

    Nat. Commun. 2019; 10: 5097

    • Paulo Zambon J.
    • et al.

    Methods to generate tissue-derived constructs for regenerative medicine applications.

    Methods. 2020; 171: 3-10

    • Anju S.
    • et al.

    Complicity of degradable polymers in health-care applications.

    Mater. Today Chem. 2020; 16100236

    • Gaharwar A.K.
    • et al.

    Engineered biomaterials for in situ tissue regeneration.

    Nat. Rev. Mater. 2020; 5: 686-705

    • Brusatin G.
    • et al.

    Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour.

    Nat. Mater. 2018; 17: 1063-1075

    • Asadpour S.
    • et al.

    Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.

    Int. J. Biol. Macromol. 2020; 154: 1285-1294

    • Sengupta D.
    • Heilshorn S.C.

    Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.

    Tissue Eng. B Rev. 2010; 16: 285-293

    • Ayyadurai N.
    • et al.

    Bioconjugation of L-3,4-dihydroxyphenylalanine containing protein with a polysaccharide.

    Bioconjug. Chem. 2011; 22: 551-555

    • Pandurangan S.
    • et al.

    Engineering of a skin-fiber-opening enzyme for sulfide-free leather beam house operation through xenobiology.

    Green Chem. 2019; 21: 2070-2081

    • Tabisz B.
    • et al.

    Site-directed immobilization of BMP-2: two approaches for the production of innovative osteoinductive scaffolds.

    Biomacromolecules. 2017; 18: 695-708

    • Costa S.A.
    • et al.

    Photo-crosslinkable unnatural amino acids enable facile synthesis of thermoresponsive nano- to microgels of intrinsically disordered polypeptides.

    Adv. Mater. 2018; 30: 1704878

    • Xu Y.
    • et al.

    Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices.

    J. Biol. Chem. 2002; 277: 27312-27318

    • Lukomski S.
    • et al.

    Identification and characterization of a second extracellular collagen-like protein made by group A Streptococcus: control of production at the level of translation.

    Infect. Immun. 2001; 69: 1729-1738

    • Yoshizumi A.
    • et al.

    Self-association of Streptococcus pyogenes collagen-like constructs into higher order structures.

    Protein Sci. 2009; 18: 1241-1251

    • Peng Y.Y.
    • et al.

    Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes.

    Acta Biomater. 2018; 80: 169-175

    • Ilamaran M.
    • et al.

    Growth factor-mimicking 3,4-dihydroxyphenylalanine-encoded bioartificial extracellular matrix like protein promotes wound closure and angiogenesis.

    Biomater. Sci. 2020; 8: 6773-6785

    • Almine J.F.
    • et al.

    Elastin-based materials.

    Chem. Soc. Rev. 2010; 39: 3371-3379

    • Bazewicz C.G.
    • et al.

    Sensitive, site-specific, and stable vibrational probe of local protein environments: 4-azidomethyl-l-phenylalanine.

    J. Phys. Chem. B. 2013; 117: 8987-8993

    • Amiram M.
    • et al.

    Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids.

    Nat. Biotechnol. 2015; 33: 1272-1279

    • Martin R.W.
    • et al.

    Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids.

    Nat. Commun. 2018; 9: 1203

    • Brennan M.J.
    • et al.

    A bioinspired elastin-based protein for a cytocompatible underwater adhesive.

    Biomaterials. 2017; 124: 116-125

    • Carrico I.S.
    • et al.

    Lithographic patterning of photoreactive cell-adhesive proteins.

    J. Am. Chem. Soc. 2007; 129: 4874-4875

    • Wu I.-L.
    • et al.

    Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides.

    Chembiochem. 2013; 14: 968-978

    • Wang Y.
    • et al.

    Protein-engineered functional materials.

    Adv. Healthc. Mater. 2019; 8e1801374

    • Sogawa H.
    • et al.

    3,4-Dihydroxyphenylalanine (DOPA)-containing silk fibroin: its enzymatic synthesis and adhesion properties.

    ACS Biomater. Sci. Eng. 2019; 5: 5644-5651

    • Teramoto H.
    • et al.

    Genetic code expansion of the silkworm Bombyx mori to functionalize silk fiber.

    ACS Synth. Biol. 2018; 7: 801-806

    • Harvey D.
    • et al.

    Antibiotic spider silk: site-specific functionalization of recombinant spider silk using ‘click’ chemistry.

    Adv. Mater. 2017; 29: 11604245

    • Kim S.
    • et al.

    Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater.

    ACS Nano. 2017; 11: 6764-6772

    • Wonderly W.R.
    • et al.

    Dueling backbones: comparing peptoid and peptide analogues of a mussel adhesive protein.

    Macromolecules. 2020; 53: 6767-6779

    • Kim H.J.
    • et al.

    Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing.

    Biomaterials. 2015; 72: 104-111

    • Castillo J.J.
    • et al.

    Comparison of natural extraction and recombinant mussel adhesive proteins approaches.

    in: Puri M. Food Bioactives: Extraction and Biotechnology Applications. Springer International, 2017: 111-135

    • Jeong Y.S.
    • et al.

    Enhanced production of DOPA-incorporated mussel adhesive protein using engineered translational machineries.

    Biotechnol. Bioeng. 2020; 117: 1961-1969

    • Guo C.
    • et al.

    Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels.

    Acta Biomater. 2017; 56: 80-90

    • Tamshen K.
    • et al.

    Genetic code expansion enables site-specific pegylation of a human growth hormone receptor antagonist through click chemistry.

    Bioconjug. Chem. 2020; 31: 2179-2190

    • Spieler V.
    • et al.

    Targeting interleukin-4 to the arthritic joint.

    J. Control. Release. 2020; 326: 172-180

    • Kim Y.
    • et al.

    Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry.

    Bioconjug. Chem. 2012; 23: 1891-1901

    • Deepankumar K.
    • et al.

    Engineering transaminase for stability enhancement and site-specific immobilization through multiple noncanonical amino acids incorporation.

    ChemCatChem. 2015; 7: 417-421

    • Davis B.G.
    • et al.

    Site-selective glycosylation of proteins: creating synthetic glycoproteins.

    Nat. Protoc. 2007; 2: 3185-3194

    • Lühmann T.
    • et al.

    Bio-orthogonal immobilization of fibroblast growth factor 2 for spatial controlled cell proliferation.

    ACS Biomater. Sci. Eng. 2015; 1: 740-746

    • Yamada T.
    • Takasu A.

    Click grafting of alkyne-containing vinyl polymers onto biosynthesized extracellular matrix protein containing azide functionality and adhesion control of human umbilical vein endothelial cells.

    RCS Adv. 2015; 5: 41445-41456

    • Takasu A.
    • et al.

    Artificial extracellular matrix proteins containing phenylalanine analogues biosynthesized in bacteria using T7 expression system and the PEGylation.

    Biomacromolecules. 2011; 12: 3444-3452

    • Xu R.
    • et al.

    Site-specific incorporation of the mucin-type N-acetylgalactosamine-alpha-O-threonine into protein in Escherichia coli.

    J. Am. Chem. Soc. 2004; 126: 15654-15655

    • Lepthien S.
    • et al.

    In vivo double and triple labeling of proteins using synthetic amino acids.

    Angew. Chem. Int. Ed. Engl. 2010; 49: 5446-5450

    • Wang F.
    • et al.

    Genetic incorporation of unnatural amino acids into proteins in Mycobacterium tuberculosis.

    PLoS One. 2010; 5e9354

    • Mukai T.
    • et al.

    Codon reassignment in the Escherichia coli genetic code.

    Nucleic Acids Res. 2010; 38: 8188-8195

    • Johnson D.B.F.
    • et al.

    RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.

    Nat. Chem. Biol. 2011; 7: 779-786

    • Johnson D.B.F.
    • et al.

    Release factor one is nonessential in Escherichia coli.

    ACS Chem. Biol. 2012; 7: 1337-1344

    • Lajoie M.J.
    • et al.

    Genomically recoded organisms expand biological functions.

    Science. 2013; 342: 357-360

    • Mukai T.
    • et al.

    Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon.

    Sci. Rep. 2015; 5: 9699

    • Mukai T.
    • et al.

    Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli.

    Nucleic Acids Res. 2015; 43: 8111-8122

    • Ayyadurai N.
    • et al.

    A facile and efficient method for the incorporation of multiple unnatural amino acids into a single protein.

    Chem. Commun. (Camb.). 2011; 47: 3430-3432

    • Hoesl M.G.
    • Budisa N.

    In vivo incorporation of multiple noncanonical amino acids into proteins.

    Angew. Chem. Int. Ed. Engl. 2011; 50: 2896-2902

    • Dunkelmann D.L.
    • et al.

    A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design.

    Nat. Chem. 2021; 13: 1110-1117

    • Liu C.C.
    • et al.

    Toward an orthogonal central dogma.

    Nat. Chem. Biol. 2018; 14: 103-106

    • Thyer R.
    • et al.

    Directed evolution of an improved aminoacyl-tRNA synthetase for incorporation of L-3,4-dihydroxyphenylalanine (L-DOPA).

    Angew. Chem. Int. Ed. Engl. 2021; 60: 14811-14816

    • Pandurangan S.
    • et al.

    Enhanced cellular uptake and sustained transdermal delivery of collagen for skin regeneration.

    ACS Appl. Bio Mater. 2020; 3: 7540-7549

    • Manandhar M.
    • et al.

    Genetic code expansion: inception, development, commercialization.

    J. Am. Chem. Soc. 2021; 143: 4859-4878

    • Lee S.
    • et al.

    A facile strategy for selective incorporation of phosphoserine into histones.

    Angew. Chem. Int. Ed. Engl. 2013; 52: 5771-5775

    • Hanson S.
    • et al.

    Chemoenzymatic synthesis of oligosaccharides and glycoproteins.

    Trends Biochem. Sci. 2004; 29: 656-663

    • Ayyadurai N.
    • et al.

    Biosynthetic substitution of tyrosine in green fluorescent protein with its surrogate fluorotyrosine in Escherichia coli.

    Biotechnol. Lett. 2011; 33: 2201-2207

    • Sisila V.
    • et al.

    Esterification of polymeric carbohydrate through congener cutinase-like biocatalyst.

    Appl. Biochem. Biotechnol. 2021; 193: 19-32

    • Augustine G.
    • et al.

    Excited state electronic interconversion and structural transformation of engineered red-emitting green fluorescent protein mutant.

    J. Phys. Chem. B. 2019; 123: 2316-2324

    • Ayyadurai N.
    • et al.

    Evaluation and biosynthetic incorporation of chlorotyrosine into recombinant proteins.

    Biotechnol. Bioprocess Eng. 2012; 17: 679

    • Cirino P.C.
    • et al.

    Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity.

    Biotechnol. Bioeng. 2003; 83: 729-734

    • Deepankumar K.
    • et al.

    Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline.

    Biochem. Biophys. Res. Commun. 2013; 440: 509-514

    • Jackson J.C.
    • et al.

    Improving nature’s enzyme active site with genetically encoded unnatural amino acids.

    J. Am. Chem. Soc. 2006; 128: 11124-11127

    • Qi H.
    • et al.

    Novel mussel-inspired universal surface functionalization strategy: protein-based coating with residue-specific post-translational modification in vivo.

    ACS Appl. Mater. Interfaces. 2019; 11: 12846-12853

  • Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications.

    Curr. Protoc. Mol. Biol. 2014; 108: 16.30.1-11

    • Kunjapur A.M.
    • et al.

    Engineering posttranslational proofreading to discriminate nonstandard amino acids.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 619-624

    • Chin J.W.
    • et al.

    An expanded eukaryotic genetic code.

    Science. 2003; 301: 964-967

    • Ai H.-W.
    • et al.

    Genetically encoded alkenes in yeast.

    Angew. Chem. Int. Ed. Engl. 2010; 49: 935-937

    • Bacher J.M.
    • Ellington A.D.

    Global incorporation of unnatural amino acids in Escherichia coli.

    Methods Mol. Biol. 2007; 352: 23-34

    • Bezerra A.R.
    • et al.

    Non-standard genetic codes define new concepts for protein engineering.

    Life (Basel). 2015; 5: 1610-1628

    • Aleksashin N.A.
    • et al.

    A fully orthogonal system for protein synthesis in bacterial cells.

    Nat. Commun. 2020; 11: 1858

    • Fekner T.
    • Chan M.K.

    The pyrrolysine translational machinery as a genetic-code expansion tool.

    Curr. Opin. Chem. Biol. 2011; 15: 387-391

  • Expanding and reprogramming the genetic code of cells and animals.

    Annu. Rev. Biochem. 2014; 83: 379-408

    • Cho C.-C.
    • et al.

    The pyrrolysyl-tRNA synthetase activity can be improved by a P188 mutation that stabilizes the full-length enzyme.

    J. Mol. Biol. 2022; 434167453

    • Bohlke N.
    • Budisa N.

    Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion.

    FEMS Microbiol. Lett. 2014; 351: 133-144

    • Zeng Y.
    • et al.

    Towards reassigning the rare AGG codon in Escherichia coli.

    Chembiochem. 2014; 15: 1750-1754

    • Niu W.
    • et al.

    An expanded genetic code in mammalian cells with a functional quadruplet codon.

    ACS Chem. Biol. 2013; 8: 1640-1645

    • Roberts S.
    • et al.

    Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins.

    Nat. Commun. 2020; 11: 1342

    • Wang L.
    • Schultz P.G.

    A general approach for the generation of orthogonal tRNAs.

    Chem. Biol. 2001; 8: 883-890

  • Time Stamp:

    More from Biotechnology Trends