Millet-inspired systems metabolic engineering of NUE in crops

Millet-inspired systems metabolic engineering of NUE in crops

Source Node: 1781987
    • Erisman J.W.
    • et al.

    How a century of ammonia synthesis changed the world.

    Nat. Geosci. 2008; 1: 636-639

    • Erisman J.W.
    • et al.

    Reactive nitrogen in the environment and its effect on climate change.

    Curr. Opin. Environ. Sustain. 2011; 3: 281-290

    • Babele P.K.
    • et al.

    Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health.

    Front. Plant Sci. 2022; 13902536

    • Choi K.R.
    • et al.

    Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering.

    Trends Biotechnol. 2019; 37: 817-837

    • Ye C.-Y.
    • Fan L.

    Orphan crops and their wild relatives in the genomic era.

    Mol. Plant. 2021; 14: 27-39

    • Brown R.H.

    A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution.

    Crop Sci. 1978; 18: 93-98

    • Makino A.
    • et al.

    Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation.

    Plant Cell Physiol. 2003; 44: 952-956

    • Evans J.R.
    • Von Caemmerer S.

    Carbon dioxide diffusion inside leaves.

    Plant Physiol. 1996; 110: 339-346

    • Ghannoum O.

    C4 photosynthesis and water stress.

    Ann. Bot. 2009; 103: 635-644

    • Kumar A.
    • et al.

    Identification of biomarker for determining genotypic potential of nitrogen-use-efficiency and optimization of the nitrogen inputs in crop plants.

    J. Crop. Sci. Biotechnol. 2009; 12: 183-194

    • Kumar R.
    • et al.

    Influence of nitrogen on the expression of TaDof1 transcription factor in wheat and its relationship with photosynthetic and ammonium assimilating efficiency.

    Mol. Biol. Rep. 2009; 36: 2209-2220

    • Shih M.L.
    • Morgan J.A.

    Metabolic flux analysis of secondary metabolism in plants.

    Metab. Eng. Commun. 2020; 10e00123

    • Xu C.
    • et al.

    SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field.

    Int. J. Mol. Sci. 2022; 23: 756

    • Gu C.
    • et al.

    Current status and applications of genome-scale metabolic models.

    Genome Biol. 2019; 20: 121

    • Allen D.K.
    • et al.

    Metabolic flux analysis in plants: coping with complexity.

    Plant Cell Environ. 2009; 32: 1241-1257

    • Young J.D.
    • et al.

    Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis.

    Metab. Eng. 2011; 13: 656-665

    • Babele P.K.
    • Young J.D.

    Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria.

    Wiley Interdiscip. Rev. Syst. Biol. Med. 2020; 12e1472

    • Ma F.
    • et al.

    Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation.

    Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 16967-16972

    • Young J.D.

    INCA: a computational platform for isotopically non-stationary metabolic flux analysis.

    Bioinformatics. 2014; 30: 1333-1335

    • Shaw R.
    • Maurice Cheung C.Y.

    A mass and charge balanced metabolic model of Setaria viridis revealed mechanisms of proton balancing in C4 plants.

    BMC Bioinformatics. 2019; 20: 357

    • Pazhamala L.T.
    • et al.

    Systems biology for crop improvement.

    Plant Genome. 2021; 14e20098

    • Kang J.
    • Turano F.J.

    The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana.

    Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 6872

    • Wang C.
    • et al.

    Systematic comparison of C3 and C4 plants based on metabolic network analysis.

    BMC Syst. Biol. 2012; 6: S9

    • Blätke M.A.
    • Bräutigam A.

    Evolution of C4 photosynthesis predicted by constraint-based modelling.

    eLife. 2019; 8e49305

    • Chen K.
    • et al.

    CRISPR/Cas genome editing and precision plant breeding in agriculture.

    Annu. Rev. Plant Biol. 2019; 70: 667-697

    • Yanagisawa S.
    • et al.

    Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions.

    Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 7833-7838

    • Gupta S.
    • et al.

    Fluctuation of Dof1/Dof2 expression ratio under the influence of varying nitrogen and light conditions: involvement in differential regulation of nitrogen metabolism in two genotypes of finger millet (Eleusine coracana L.).

    Gene. 2014; 546: 327-335

    • Kurai T.
    • et al.

    Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.

    Plant Biotechnol. J. 2011; 9: 826-837

    • Hsieh M.H.
    • et al.

    A PII-like protein in Arabidopsis: putative role in nitrogen sensing.

    Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 13965-13970

    • Tian Z.
    • et al.

    Designing future crops: challenges and strategies for sustainable agriculture.

    Plant J. 2021; 105: 1165-1178

    • Pouvreau B.
    • et al.

    From plant metabolic engineering to plant synthetic biology: the evolution of the design/build/test/learn cycle.

    Plant Sci. 2018; 273: 3-12

    • Lawson C.E.
    • et al.

    Common principles and best practices for engineering microbiomes.

    Nat. Rev. Microbiol. 2019; 17: 725-741

    • Zhu Q.
    • et al.

    Plant synthetic metabolic engineering for enhancing crop nutritional quality.

    Plant Commun. 2020; 1100017

    • Carbonell P.
    • et al.

    An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals.

    Commun. Biol. 2018; 11: 66

    • Cui H.

    Challenges and approaches to crop improvement through C3-to-C4 engineering.

    Front. Plant Sci. 2021; 12: 1851

    • Baslam M.
    • et al.

    Recent advances in carbon and nitrogen metabolism in C3 plants.

    Int. J. Mol. Sci. 2021; 22: 318

    • Araus V.
    • et al.

    A balancing act: how plants integrate nitrogen and water signals.

    J. Exp. Bot. 2020; 71: 4442-4451

    • Forchhammer K.
    • Selim K.A.

    Carbon/nitrogen homeostasis control in cyanobacteria.

    FEMS Microbiol. Rev. 2020; 44: 33-53

    • Selim K.A.
    • et al.

    From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom.

    New Phytol. 2020; 227: 722-731

    • Forchhammer K.
    • et al.

    New views on PII signaling: from nitrogen sensing to global metabolic control.

    Trends Microbiol. 2022; 30: 722-735

    • Selim K.A.
    • et al.

    Tuning the in vitro sensing and signaling properties of cyanobacterial PII protein by mutation of key residues.

    Sci. Rep. 2019; 9: 18985

    • Lapina T.
    • et al.

    The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins.

    Sci. Rep. 2018; 8: 790

    • Selim K.A.
    • et al.

    PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: e4861-e4869

    • Selim K.A.
    • et al.

    Carbon signaling protein SbtB possesses redox-regulated apyrase activity to facilitate regulation of bicarbonate transporter SbtA.

    bioRxiv. 2022; (Published online June 21, 2022. https://doi.org/10.1101/2022.05.18.492403)

    • Mantovani O.
    • et al.

    The impact of the cyanobacterial carbon-regulator protein SbtB and of the second messengers cAMP and c-di-AMP on CO2-dependent gene expression.

    New Phytol. 2022; 234: 1801-1816

    • Selim K.A.
    • et al.

    Diurnal metabolic control in cyanobacteria requires perception of second messenger signaling molecule c-di-AMP by the carbon control protein SbtB.

    Sci. Adv. 2021; 7: 568

    • Selim K.A.
    • et al.

    Functional and structural characterization of PII-like protein CutA does not support involvement in heavy metal tolerance and hints at a small-molecule carrying/signaling role.

    FEBS J. 2021; 288: 1142-1162

    • Liu X.Y.
    • et al.

    Structures of cyanobacterial bicarbonate transporter SbtA and its complex with PII-like SbtB.

    Cell Discov. 2021; 7: 63

    • Orthwein T.
    • et al.

    The novel PII-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria.

    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2019988118

    • Scholl J.
    • et al.

    Phosphoenolpyruvate carboxylase from the cyanobacterium Synechocystis sp. PCC 6803 is under global metabolic control by PII signaling.

    Mol. Microbiol. 2020; 114: 292-307

    • Hauf W.
    • et al.

    Interaction of the nitrogen regulatory protein GlnB (PII) with biotin carboxyl carrier protein (BCCP) controls acetyl-CoA levels in the cyanobacterium Synechocystis sp. PCC 6803.

    Front. Microbiol. 2016; 7: 1700

    • Bourrellier A.B.F.
    • et al.

    Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 502-507

    • Selim K.A.
    • et al.

    Interaction of N-acetyl-l-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: co-evolution towards a hetero-oligomeric enzyme.

    FEBS J. 2020; 287: 465-482

    • Bolay P.
    • et al.

    The novel PII-interacting protein PirA controls flux into the cyanobacterial ornithine–ammonia cycle.

    mBio. 2021; 12e00229-21

    • Stefanello A.A.
    • et al.

    Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites.

    Biochim. Biophys. Acta Proteins Proteom. 2020; 1868140348

    • Bueno-Batista M.
    • et al.

    Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs.

    PLoS Genet. 2021; 17e1009617

    • Nordlund S.

    Metabolic regulation of nitrogenase activity in Rhodospirillum rubrum: the role of PII proteins and membrane sequestration.

    Biol. Nitrogen Fixat. 2015; 1–2: 131-138

    • Rajendran C.
    • et al.

    Crystal structure of the GlnZ–DraG complex reveals a different form of PII-target interaction.

    Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 18972-18976

    • de Oliveira Dal’Molin, C.G.
    • et al.

    C4GEM, a genome-scale metabolic model to study C4 plant metabolism.

    Plant Physiol. 2010; 154: 1871-1885

    • Saha R.
    • et al.

    Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism.

    PLoS One. 2011; 6e21784

    • Simons M.
    • et al.

    Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model.

    Plant Physiol. 2014; 166: 1659-1674

    • diCenzo G.C.
    • et al.

    Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium.

    Nat. Commun. 2020; 11: 2574

    • Moreira T.B.
    • et al.

    A genome-scale metabolic model of soybean (Glycine max) highlights metabolic fluxes in seedlings.

    Plant Physiol. 2019; 180: 1912-1929

    • Grafahrend-Belau E.
    • et al.

    Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism.

    Plant Physiol. 2009; 149: 585-598

    • Schulte C.C.M.
    • et al.

    Metabolic control of nitrogen fixation in rhizobium–legume symbioses.

    Sci. Adv. 2021; 7eabh2433

    • Zhang J.
    • et al.

    Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9.

    J. Integr. Plant Biol. 2021; 63: 1649-1663

    • Chen K.-E.
    • et al.

    Improving nitrogen use efficiency by manipulating nitrate remobilization in plants.

    Nat. Plants. 2020; 69: 1126-1135

    • Chen J.
    • et al.

    pOsNAR2.1: OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    Plant Biotechnol. J. 2017; 15: 1273

    • Yuan L.
    • et al.

    Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1.

    Plant Physiol. 2007; 143: 732-744

    • Hirner A.
    • et al.

    Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll.

    Plant Cell. 2006; 18: 1931-1946

    • Schofield R.A.
    • et al.

    Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings.

    Plant Cell Environ. 2009; 32: 271-285

    • Perchlik M.
    • Tegeder M.

    Improving plant nitrogen use efficiency through alteration of amino acid transport processes.

    Plant Physiol. 2017; 175: 235-247

    • AK S.
    • et al.

    Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase.

    Plant Biotechnol. J. 2008; 6: 722-732

    • Tiong J.
    • et al.

    Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley.

    Front. Plant Sci. 2021; 12628521

    • Lee S.
    • et al.

    OsASN1 overexpression in rice increases grain protein content and yield under nitrogen-limiting conditions.

    Plant Cell Physiol. 2020; 61: 1309-1320

    • Wu D.
    • et al.

    Increased glutamine synthetase by overexpression of TaGS1 improves grain yield and nitrogen use efficiency in rice.

    Plant Physiol. Biochem. 2021; 169: 259-268

    • Zeng D.D.
    • et al.

    The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice.

    Mol. Gen. Genomics. 2017; 292: 385-395

    • Sun H.
    • et al.

    Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.

    Nat. Genet. 2014; 46: 652-656

    • Han M.
    • et al.

    Identification of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits.

    Front. Plant Sci. 2016; 7: 1587

    • Bi Y.M.
    • et al.

    Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling.

    Plant Cell Environ. 2009; 32: 1749-1760

    • Rubio-Wilhelmi M.D.M.
    • et al.

    Cytokinin-dependent improvement in transgenic PSARK::IPT tobacco under nitrogen deficiency.

    J. Agric. Food Chem. 2011; 59: 10491-10495

    • Chiasson D.M.
    • et al.

    Soybean SAT1 (symbiotic ammonium transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 4814-4819

    • Nelson D.E.
    • et al.

    Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres.

    Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 16450-16455

    • He X.
    • et al.

    The nitrate-inducible NAC transcription factor tanac2-5a controls nitrate response and increases wheat yield.

    Plant Physiol. 2015; 169: 1991

    • Li W.
    • et al.

    A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal.

    New Phytol. 2020; 225: 1667-1680

  • Time Stamp:

    More from Biotechnology Trends