Hypes, hopes, and the way forward for microalgal biotechnology

Hypes, hopes, and the way forward for microalgal biotechnology

Source Node: 1919024
    • Pulz O.
    • Scheibenbogen K.

    Photobioreactors: Design and performance with respect to energy input light.

    Adv. Biochem. Eng. Biotechnol. 1998; 59: 123-152

    • Belasco W.

    Algae burgers for a hungry world? The rise and fall of Chlorella cuisine.

    Technol. Cult. 1997; 38: 606-634

    • Oswald W.J.

    My sixty years in applied algology.

    J. Appl. Phycol. 2003; 15: 99-106

    • Olaizola M.
    • Grewe C.

    Commercial microalgal cultivation systems.

    in: Hallmann A. Rampelotto P. Grand Challenges in Algae Biotechnology. Springer, 2019: 3-34

    • Janssen M.
    • et al.

    Microalgae based production of single-cell protein.

    Curr. Opin. Biotechnol. 2022; 75102705

    • Benvenuti G.
    • et al.

    Towards microalgal triglycerides in the commodity markets.

    Biotechnol. Biofuels. 2017; 10: 188

    • Abiusi F.
    • et al.

    Doubling of microalgae productivity by oxygen balanced mixotrophy.

    ACS Sustain. Chem. Eng. 2020; 8: 6065-6074

    • Abiusi F.
    • et al.

    Mixotrophic cultivation of Galdieria sulphuraria for C-phycocyanin and protein production.

    Algal Res. 2022; 61102603

    • Leger D.
    • et al.

    Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops.

    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2015025118

    • Hirooka S.
    • et al.

    Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use.

    Proc. Natl. Acad. Sci. U. S. A. 2022; 119e2210665119

    • Abiusi F.
    • et al.

    Autotrophic and mixotrophic biomass production of the acidophilic Galdieria sulphuraria ACUF 64.

    Algal Res. 2021; 60102513

    • Seckback J.

    Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells.

    Springer, 1994

    • Schmidt R.A.
    • et al.

    Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria.

    Biotechnol. Bioeng. 2005; 90: 77-84

    • Barten R.J.P.
    • et al.

    Bioprospecting and characterization of temperature tolerant microalgae from Bonaire.

    Algal Res. 2020; 50102008

    • Barten R.
    • et al.

    Growth parameter estimation and model simulation for three industrially relevant microalgae: Picochlorum, Nannochloropsis, and Neochloris.

    Biotechnol. Bioeng. 2022; 119: 1416-1425

    • Dahlin L.R.
    • et al.

    Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo.

    Commun. Biol. 2019; 2: 388

    • Weissman J.C.
    • et al.

    High-light selection produces a fast-growing Picochlorum celeri.

    Algal Res. 2018; 36: 17-28

    • Rasheed R.
    • et al.

    Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar.

    Sci. Total Environ. 2022; 835155538

    • Alewell C.
    • et al.

    Global phosphorus shortage will be aggravated by soil erosion.

    Nat. Commun. 2020; 11: 4546

    • Socolow R.H.

    Nitrogen management and the future of food: Lessons from the management of energy and carbon.

    Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 6001-6008

    • European Commission

    Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports.

    2021

    • Pingali P.L.

    Green revolution: Impacts, limits, and the path ahead.

    Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 12302-12308

    • European Environment Agency

    Nutrient enrichment and eutrophication in Europe’s seas moving towards a healthy marine environment.

    2019

    • Wijffels R.H.
    • Barbosa M.J.

    An outlook on microalgal biofuels.

    Science. 2010; 329: 796-799

    • Asgharnejad H.
    • et al.

    Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water-food-environment nexus.

    Compr. Rev. Food Sci. Food Saf. 2021; 20: 4779-4815

    • Abdelfattah A.
    • et al.

    Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects.

    Environ. Sci. Ecotechnol. 2022; 13100205

    • Li-Beisson Y.
    • et al.

    The lipid biochemistry of eukaryotic algae.

    Prog. Lipid Res. 2019; 74: 31-68

    • Breuer G.
    • et al.

    The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains.

    Bioresour. Technol. 2012; 124: 217-226

    • Sprague M.
    • et al.

    Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    Sci. Rep. 2016; 6: 21892

    • Ma X.N.
    • et al.

    Lipid production from Nannochloropsis.

    Mar. Drugs. 2016; 14https://doi.org/10.3390/md14040061

    • Ratledge C.

    Omega-3 biotechnology: Errors and omissions.

    Biotechnol. Adv. 2012; 30: 1746-1747

    • Tocher D.R.
    • et al.

    Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand.

    Nutrients. 2019; 11: 89

    • Adarme-Vega T.C.
    • et al.

    Towards sustainable sources for omega-3 fatty acids production.

    Curr. Opin. Biotechnol. 2014; 26: 14-18

    • Adarme-Vega T.C.
    • et al.

    Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production.

    Microb. Cell Factories. 2012; 11: 1

    • Betancor M.B.
    • et al.

    A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish.

    Sci. Rep. 2015; 5: 8104

    • Usher S.
    • et al.

    Tailoring seed oil composition in the real world: Optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa.

    Sci. Rep. 2017; 7: 1-12

    • Xue Z.
    • et al.

    Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

    Nat. Biotechnol. 2013; 31: 734-740

    • Xie D.
    • et al.

    Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production.

    Appl. Microbiol. Biotechnol. 2015; 99: 1599-1610

    • Remmers I.M.
    • et al.

    Can we approach theoretical lipid yields in microalgae?.

    Trends Biotechnol. 2018; 36: 265-276

    • Rodolfi L.
    • et al.

    Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.

    Biotechnol. Bioeng. 2009; 102: 100-112

    • Benvenuti G.
    • et al.

    Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation.

    J. Appl. Phycol. 2015; 27: 1425-1431

    • Benvenuti G.
    • et al.

    Batch and semi-continuous microalgal TAG production in lab-scale and outdoor photobioreactors.

    J. Appl. Phycol. 2016; 28: 3167-3177

    • Slocombe S.P.
    • et al.

    Unlocking nature’s treasure-chest: screening for oleaginous algae.

    Sci. Rep. 2015; 5: 9844

    • Ajjawi I.
    • et al.

    Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator.

    Nat. Biotechnol. 2017; 35: 647-652

    • Muñoz C.F.
    • et al.

    Genetic engineering of microalgae for enhanced lipid production.

    Biotechnology Advances. vol. 52. Elsevier Inc., 2021https://doi.org/10.1016/j.biotechadv.2021.107836

    • Südfeld C.
    • et al.

    High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica.

    Metab. Eng. 2021; 66: 239-258

    • Zienkiewicz K.
    • et al.

    Stress-induced neutral lipid biosynthesis in microalgae – Molecular, cellular and physiological insights.

    Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016; 1861: 1269-1281

    • García J.L.
    • et al.

    Microalgae, old sustainable food and fashion nutraceuticals.

    Microb. Biotechnol. 2017; 10: 1017-1024

    • Ma Y.
    • et al.

    Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.

    Bioresour. Technol. 2014; 167: 503-509

    • Paul K.
    • et al.

    Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening.

    Photosynth. Res. 2022; https://doi.org/10.1007/s11120-022-00984-x

    • Vieler A.
    • et al.

    Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    PLoS Genet. 2012; 8https://doi.org/10.1371/journal.pgen.1003064

    • Wang D.
    • et al.

    Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    PLoS Genet. 2014; 10https://doi.org/10.1371/journal.pgen.1004094

    • Li J.
    • et al.

    Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae.

    Plant Cell. 2014; 26: 1645-1665

    • Wang Q.
    • et al.

    Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9.

    Plant J. 2016; 88https://doi.org/10.1111/tpj.13307

    • Li D.W.
    • et al.

    A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica.

    J. Biotechnol. 2016; 229: 65-71

    • Xiao Y.
    • et al.

    Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress.

    Bioresour. Technol. 2013; 130: 731-738

    • Südfeld C.
    • et al.

    Accumulation of medium chain fatty acids in Nannochloropsis oceanica by heterologous expression of Cuphea palustris thioesterase FatB1.

    Algal Res. 2022; 64https://doi.org/10.1016/j.algal.2022.102665

    • Südfeld C.
    • et al.

    The nucleolus as a genomic safe harbor for strong gene expression in Nannochloropsis oceanica.

    Mol. Plant. 2022; 15: 340-353

    • Naduthodi M.I.S.
    • et al.

    Comprehensive genome engineering toolbox for microalgae Nannochloropsis oceanica based on CRISPR-Cas systems.

    ACS Synth. Biol. 2021; 10: 3369-3378

    • Naduthodi M.I.S.
    • et al.

    CRISPR–Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1.

    Biotechnol. Biofuels. 2019; 12: 66

    • Zanella L.
    • Vianello F.

    Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition.

    Journal of Functional Foods. 68. Elsevier Ltd, 2020https://doi.org/10.1016/j.jff.2020.103919

    • Krishnan A.
    • et al.

    Picochlorum celeri as a model system for robust outdoor algal growth in seawater.

    Sci. Rep. 2021; 11https://doi.org/10.1038/s41598-021-91106-5

    • Dahlin L.R.
    • Guarnieri M.T.

    Development of the high-productivity marine microalga, Picochlorum renovo, as a photosynthetic protein secretion platform.

    Algal Res. 2021; 54https://doi.org/10.1016/j.algal.2021.102197

    • Lu Y.
    • et al.

    Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection.

    Nat. Commun. 2021; 12https://doi.org/10.1038/s41467-021-20967-1

    • Osorio H.
    • et al.

    High-efficiency nuclear transformation of the microalgae Nannochloropsis oceanica using Tn5 transposome for the generation of altered lipid accumulation phenotypes.

    Biotechnol. Biofuels. 2019; 12https://doi.org/10.1186/s13068-019-1475-y

    • Ryu A.J.
    • et al.

    Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production.

    Biotechnol. Biofuels. 2020; 13https://doi.org/10.1186/s13068-020-01681-4

    • Gong Y.
    • et al.

    The NanDeSyn database for Nannochloropsis systems and synthetic biology.

    Plant J. 2020; 104: 1736-1745

    • Radakovits R.
    • et al.

    Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.

    Nat. Commun. 2012; 3: 610-686

    • Wei L.
    • et al.

    RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica.

    Plant J. 2017; 89: 1236-1250

    • Wei L.
    • et al.

    A CRISPR/dCas9-based transcription activated system developed in marine microalga Nannochloropsis oceanica.

    Aquaculture. 2022; 546https://doi.org/10.1016/j.aquaculture.2021.737064

    • de Grahl I.
    • et al.

    Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica.

    Appl. Microbiol. Biotechnol. 2020; 104: 8747-8760

    • Moyle P.M.
    • Toth I.

    Modern subunit vaccines: Development, components, and research opportunities.

    ChemMedChem. 2013; 8: 360-376

    • de Smet R.
    • et al.

    Recent advances in oral vaccine development: Yeast-derived β-glucan particles.

    Hum. Vaccin. Immunother. 2014; 10: 1309-1318

    • Trovato M.

    Novel antigen delivery systems.

    World J. Virol. 2015; 4: 156

    • Lössl A.G.
    • Waheed M.T.

    Chloroplast-derived vaccines against human diseases: Achievements, challenges and scopes.

    Plant Biotechnol. J. 2011; 9: 527-539

    • Rybicki E.P.

    Plant-produced vaccines: promise and reality.

    Drug Discov. Today. 2009; 14: 16-24

    • Manuell A.L.
    • et al.

    Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast.

    Plant Biotechnol. J. 2007; 5: 402-412

    • Specht E.A.
    • Mayfield S.P.

    Algae-based oral recombinant vaccines.

    Frontiers in Microbiology. vol. 5, no. FEB. Frontiers Research Foundation, 2014https://doi.org/10.3389/fmicb.2014.00060

    • Ma K.
    • et al.

    Evaluation of microalgae as immunostimulants and recombinant vaccines for diseases prevention and control in aquaculture.

    Frontiers in Bioengineering and Biotechnology. vol. 8. Frontiers Media S.A., 2020https://doi.org/10.3389/fbioe.2020.590431

    • Michelet L.
    • et al.

    Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas.

    Plant Biotechnol. J. 2011; 9: 565-574

    • Feng S.
    • et al.

    Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish.

    Arch. Virol. 2014; 159: 519-525

    • Jia X.H.
    • et al.

    Oral administration of Anabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp.

    J. Appl. Phycol. 2016; 28: 1001-1009

    • Zhai Y.F.
    • et al.

    Effect of trans-vp28 gene Synechocystis sp. PCC6803 on growth and immunity of Litopenaeus vannamei and defense against white spot syndrome virus (WSSV).

    Aquaculture. 2019; 512https://doi.org/10.1016/j.aquaculture.2019.734306

    • Dreesen I.A.J.
    • et al.

    Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection.

    J. Biotechnol. 2010; 145: 273-280

    • Jester B.W.
    • et al.

    Development of spirulina for the manufacture and oral delivery of protein therapeutics.

    Nat. Biotechnol. 2022; 40: 956-964

    • Tripathi N.K.
    • Shrivastava A.

    Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development.

    Frontiers in Bioengineering and Biotechnology. vol. 7. Frontiers Media S.A., 2019https://doi.org/10.3389/fbioe.2019.00420

    • Schillberg S.
    • et al.

    Critical analysis of the commercial potential of plants for the production of recombinant proteins.

    Front. Plant Sci. 2019; 10https://doi.org/10.3389/fpls.2019.00720

    • Barone P.W.
    • et al.

    Viral contamination in biologic manufacture and implications for emerging therapies.

    Nature Biotechnology. vol. 38, no. 5. Nature Research, 2020: 563-572

    • Kim D.H.
    • et al.

    Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea.

    Mar. Biotechnol. (NY). 2002; 4https://doi.org/10.1007/s1012601-0070-x

    • Mayfield S.P.
    • et al.

    Expression and assembly of a fully active antibody in algae.

    Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 438-442

    • Rasala B.A.
    • et al.

    Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii.

    Plant Biotechnol. J. 2010; 8: 719-733

    • Hempel F.
    • et al.

    Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum.

    PLoS One. 2011; 6https://doi.org/10.1371/journal.pone.0028424

    • Banerjee A.
    • Ward V.

    Production of recombinant and therapeutic proteins in microalgae.

    Current Opinion in Biotechnology. vol. 78. Elsevier Ltd, 2022https://doi.org/10.1016/j.copbio.2022.102784

    • Dicker M.
    • et al.

    Transient glyco-engineering to produce recombinant IgA1 with defined N-and O-glycans in plants.

    Front. Plant Sci. 2016; 7https://doi.org/10.3389/fpls.2016.00018

    • Demain A.L.
    • Vaishnav P.

    Production of recombinant proteins by microbes and higher organisms.

    Biotechnol. Adv. 2009; 27: 297-306

    • Puetz J.
    • Wurm F.M.

    Recombinant proteins for industrial versus pharmaceutical purposes: A review of process and pricing.

    Processes. 2019; 7: 476

    • Owczarek B.
    • et al.

    A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals.

    BioMed Research International. vol. 2019. Hindawi Limited, 2019https://doi.org/10.1155/2019/4216060

    • Ma B.
    • et al.

    Protein glycoengineering: An approach for improving protein properties.

    Frontiers in Chemistry. vol. 8. Frontiers Media S.A., 2020https://doi.org/10.3389/fchem.2020.00622

    • Yan N.
    • et al.

    The potential for microalgae as bioreactors to produce pharmaceuticals.

    Int. J. Mol. Sci. 2016; 17: 962

    • Shanmugaraj B.
    • et al.

    Biotechnological insights on the expression and production of antimicrobial peptides in plants.

    Molecules. vol. 26, no. 13. MDPI AG, 2021https://doi.org/10.3390/molecules26134032

    • Blanken W.
    • et al.

    Cultivation of microalgae on artificial light comes at a cost.

    Algal Res. 2013; 2: 333-340

  • Oxygen balanced mixotrophy in microalgae.

    Wageningen University, Wageningen2021

    • Ruiz J.
    • et al.

    Towards industrial products from microalgae.

    Energy Environ. Sci. 2016; 9: 3036-3043

    • Vázquez-Romero B.
    • et al.

    Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture.

    Sci. Total Environ. 2022; 837https://doi.org/10.1016/j.scitotenv.2022.155742

    • Muys M.
    • et al.

    High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies.

    Bioresour. Technol. 2019; 275: 247-257

    • Ortega-Calvo J.J.

    Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain.

    J. Appl. Phycol. 1993; 5: 425-435

    • Ritala A.
    • et al.

    Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016.

    Frontiers in Microbiology. vol. 8, no. OCT. Frontiers Media S.A., 2017https://doi.org/10.3389/fmicb.2017.02009

    • Fouad M.M.
    • et al.

    An integrated review of factors influencing the performance of photovoltaic panels’.

    Renewable and Sustainable Energy Reviews. vol. 80. Elsevier Ltd, 2017: 1499-1511

    • European Market Observatory for Fisheries and Aquaculture Products

    Fishmeal and fish oil production and trade flows in the EU.

    2021https://doi.org/10.2771/062233

  • Time Stamp:

    More from Biotechnology Trends