Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds - Nature Nanotechnology

Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds – Nature Nanotechnology

Source Node: 2577646
  • Rice, J. B. et al. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 37, 651–658 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDermott, K., Fang, M., Boulton, A. J. M., Selvin, E. & Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 46, 209–221 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis (dagger). Ann. Med. 49, 106–116 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Falanga, V. et al. Chronic wounds. Nat. Rev. Dis. Prim. 8, 50 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Naghibi, M. et al. The effect of diabetes mellitus on chemotactic and bactericidal activity of human polymorphonuclear leukocytes. Diabetes Res. Clin. Pract. 4, 27–35 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zykova, S. N. et al. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 49, 1451–1458 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thurlow, L. R., Stephens, A. C., Hurley, K. E. & Richardson, A. R. Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 6, eabc5569 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavery, L. A. et al. Risk factors for foot infections in individuals with diabetes. Diabetes Care 29, 1288–1293 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong, D. G. et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res. 13, 16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geiss, L. S. et al. Resurgence of diabetes-related nontraumatic lower-extremity amputation in the young and middle-aged adult U.S. population. Diabetes Care 42, 50–54 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. The global burden of diabetic foot disease. Lancet 366, 1719–1724 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Jeffcoate, W. J., Vileikyte, L., Boyko, E. J., Armstrong, D. G. & Boulton, A. J. M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 41, 645–652 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bowling, F. L., Rashid, S. T. & Boulton, A. J. Preventing and treating foot complications associated with diabetes mellitus. Nat. Rev. Endocrinol. 11, 606–616 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F. & Nogueira-Machado, J. A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell. Death. Dis. 9, 119 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Scarless wound healing programmed by core–shell microneedles. Nat. Commun. 14, 3431 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willenborg, S. et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell. Metab. 33, 2398–2414 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veves, A., Falanga, V., Armstrong, D. G., Sabolinski, M. L. & Apligraf Diabetic Foot Ulcer Study. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24, 290–295 (2001).

  • Marston, W. A., Hanft, J., Norwood, P., Pollak, R. & Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26, 1701–1705 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Theocharidis, G. et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 6, 1118–1133 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruciani, M., Lipsky, B. A., Mengoli, C. & de Lalla, F. Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections?: A meta-analysis. Diabetes Care 28, 454–460 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziyadeh, N., Fife, D., Walker, A. M., Wilkinson, G. S. & Seeger, J. D. A matched cohort study of the risk of cancer in users of becaplermin. Adv. Skin. Wound Care. 24, 31–39 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc. Natl Acad. Sci. USA 115, 6816–6821 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J., Yang, M., Xu, F., Chen, J. & Ma, S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci. 233, 116728 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Symbiotic algae–bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22, 229–237 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. D. et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 31, 2009442 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lipsky, B. A. et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 39, 885–910 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kalelkar, P. P., Riddick, M. & Garcia, A. J. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 7, 39–54 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Game, F. Management of osteomyelitis of the foot in diabetes mellitus. Nat. Rev. Endocrinol. 6, 43–47 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Xiu, W. et al. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 13, 3875 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11, 5737–5745 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, S. et al. Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proc. Natl Acad. Sci. USA 116, 23437–23443 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotruck, J. T. et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia Soriano, F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642–650 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Skin γδ T cells and their function in wound healing. Front. Immunol. 13, 875076 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath, W. R. & Carbone, F. R. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat. Immunol. 14, 978–985 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seraphim, P. M. et al. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci. 254, 117813 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maschalidi, S. et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606, 776–784 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Reversing SKI–SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551, 105–109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, Z. et al. Characterization of TGF-beta signaling in a human organotypic skin model reveals that loss of TGF-betaRII induces invasive tissue growth. Sci. Signal. 15, eabo2206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schatteman, G. C., Hanlon, H. D., Jiao, C., Dodds, S. G. & Christy, B. A. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest. 106, 571–578 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furman, B. L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 70, 5.47.1–5.47.20 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Time Stamp:

    More from Nature Nanotechnology