Layered materials as a platform for quantum technologies - Nature Nanotechnology

Layered materials as a platform for quantum technologies – Nature Nanotechnology

Source Node: 2142727
  • Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018).

    Article  Google Scholar 

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  Google Scholar 

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  Google Scholar 

  • Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article  CAS  Google Scholar 

  • Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).

    Article  CAS  Google Scholar 

  • Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

    Article  CAS  Google Scholar 

  • Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  • Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    Article  CAS  Google Scholar 

  • Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).

    Article  CAS  Google Scholar 

  • Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).

    Article  CAS  Google Scholar 

  • Bergeron, L. et al. Silicon-integrated telecommunications photon–spin interface. PRX Quantum 1, 020301 (2020).

    Article  Google Scholar 

  • Chartrand, C. et al. Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B 98, 195201 (2018).

    Article  CAS  Google Scholar 

  • Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).

    Article  CAS  Google Scholar 

  • Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  • Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    Article  CAS  Google Scholar 

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  CAS  Google Scholar 

  • Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article  CAS  Google Scholar 

  • Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article  CAS  Google Scholar 

  • Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  • Ishii, A. et al. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 18, 3873–3878 (2018).

    Article  CAS  Google Scholar 

  • Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  CAS  Google Scholar 

  • Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  CAS  Google Scholar 

  • Gjerding, M. N. et al. Recent progress of the Computational 2D Materials Database (C2DB). 2D Mater. 8, 044002 (2021).

    Article  CAS  Google Scholar 

  • Iyengar, S. A., Puthirath, A. B. & Swaminathan, V. Realizing quantum technologies in nanomaterials and nanoscience. Adv. Mater. 2022, 2107839 (2022).

    Article  Google Scholar 

  • Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  CAS  Google Scholar 

  • Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

    Article  CAS  Google Scholar 

  • Backes, C. et al. Production and processing of graphene and related materials. 2D Mater. 7, 022001 (2020).

    Article  CAS  Google Scholar 

  • Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  • Brotons-Gisbert, M., Martínez-Pastor, J. P., Ballesteros, G. C., Gerardot, B. D. & Sánchez-Royo, J. F. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics 7, 253–267 (2018).

    Article  Google Scholar 

  • Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

    Article  CAS  Google Scholar 

  • Cai, T. et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564–6568 (2017).

    Article  CAS  Google Scholar 

  • Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    Article  CAS  Google Scholar 

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  • Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  • Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  CAS  Google Scholar 

  • Seifert, P. et al. Magic-angle bilayer graphene nanocalorimeters: toward broadband, energy-resolving single photon detection. Nano Lett. 20, 3459–3464 (2020).

    Article  CAS  Google Scholar 

  • Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  CAS  Google Scholar 

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  Google Scholar 

  • Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  Google Scholar 

  • Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  Google Scholar 

  • He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  • Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

    Article  CAS  Google Scholar 

  • Yu, L. et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021).

    Article  CAS  Google Scholar 

  • Klein, J. et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019).

    Article  CAS  Google Scholar 

  • Zhao, H., Pettes, M. T., Zheng, Y. & Htoon, H. Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021).

    Article  CAS  Google Scholar 

  • Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  Google Scholar 

  • Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).

    Article  CAS  Google Scholar 

  • Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).

    Article  CAS  Google Scholar 

  • Zhaon, H. et al. Manipulating interlayer excitons for ultra-pure near-infrared quantum light generation. Preprint at https://arxiv.org/abs/2205.02472 (2022).

  • Wang, W. & Ma, X. Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon. 7, 2460–2467 (2020).

    Article  CAS  Google Scholar 

  • Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  CAS  Google Scholar 

  • Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).

    Article  Google Scholar 

  • Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals indium selenide crystals. Sci. Rep. 6, 39619 (2016).

    Article  CAS  Google Scholar 

  • Feuer, M. S. G. et al. Identification of exciton complexes in a charge-tunable Janus WSeS monolayer. ACS Nano 17, 7326–7334 (2023).

    Article  CAS  Google Scholar 

  • Luo, Y., Liu, N., Li, X., Hone, J. C. & Strauf, S. Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019).

    Article  CAS  Google Scholar 

  • Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article  CAS  Google Scholar 

  • Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  CAS  Google Scholar 

  • Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).

    Article  CAS  Google Scholar 

  • Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).

    Article  Google Scholar 

  • Mostaani, E. et al. Charge-carrier complexes in monolayer semiconductors. Preprint at https://arxiv.org/abs/2209.01593 (2022).

  • Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  CAS  Google Scholar 

  • Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).

    Article  CAS  Google Scholar 

  • Rosenberger, M. R. et al. Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019).

    Article  CAS  Google Scholar 

  • Flatten, L. C. et al. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112, 191105 (2018).

    Article  Google Scholar 

  • Iff, O. et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26, 25944–25951 (2018).

    Article  CAS  Google Scholar 

  • Chakraborty, C. et al. Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017).

    Article  CAS  Google Scholar 

  • Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).

    Article  CAS  Google Scholar 

  • Iff, O. et al. Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931–6936 (2019).

    Article  CAS  Google Scholar 

  • Lindlau, J. et al. The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nat. Commun. 9, 2586 (2018).

    Article  Google Scholar 

  • Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article  Google Scholar 

  • Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).

    Article  CAS  Google Scholar 

  • Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    Article  CAS  Google Scholar 

  • Moon, H. et al. Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photon. 7, 1135–1140 (2020).

    Article  CAS  Google Scholar 

  • Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  CAS  Google Scholar 

  • Gelly, R. J. et al. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 13, 232 (2022).

    Article  CAS  Google Scholar 

  • Chakraborty, C., Goodfellow, K. M. & Vamivakas, A. N. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).

    Article  CAS  Google Scholar 

  • Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  Google Scholar 

  • Wang, W., Jones, L. O., Chen, J.-S., Schatz, G. C. & Ma, X. Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022).

    Article  CAS  Google Scholar 

  • Klein, J. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photon. 8, 669–677 (2021).

    Article  CAS  Google Scholar 

  • Barthelmi, K. et al. Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117, 070501 (2020).

    Article  CAS  Google Scholar 

  • Hötger, A. et al. Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021).

    Article  Google Scholar 

  • Ye, Y. et al. Single photon emission from deep-level defects in monolayer WS2. Phys. Rev. B 95, 245313 (2017).

    Article  Google Scholar 

  • Daveau, R. S. et al. Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. APL Photon. 5, 096105 (2020).

    Article  CAS  Google Scholar 

  • Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  • Iff, O. et al. Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4, 669–673 (2017).

    Article  CAS  Google Scholar 

  • Abidi, I. H. et al. Selective defect formation in hexagonal boron nitride. Adv. Opt. Mater. 7, 1900397 (2019).

    Article  Google Scholar 

  • Ngoc My Duong, H. et al. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).

    Article  CAS  Google Scholar 

  • Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    Article  CAS  Google Scholar 

  • Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  CAS  Google Scholar 

  • Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).

    Article  CAS  Google Scholar 

  • Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).

    Article  CAS  Google Scholar 

  • Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  CAS  Google Scholar 

  • Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).

    Article  CAS  Google Scholar 

  • Li, K., Smart, T. J. & Ping, Y. Carbon trimer as a 2 eV single-photon emitter candidate in hexagonal boron nitride: a first-principles study. Phys. Rev. Mater. 6, L042201 (2022).

    Article  CAS  Google Scholar 

  • Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).

    Article  CAS  Google Scholar 

  • Tan, Q. et al. Donor–acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).

    Article  CAS  Google Scholar 

  • Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).

    Article  CAS  Google Scholar 

  • Xia, Y. et al. Room-temperature giant Stark effect of single photon emitter in van der Waals material. Nano Lett. 19, 7100–7105 (2019).

    Article  CAS  Google Scholar 

  • White, S. J. U. et al. Electrical control of quantum emitters in a Van der Waals heterostructure. Light Sci. Appl. 11, 186 (2022).

    Article  CAS  Google Scholar 

  • Li, X., Scully, R. A., Shayan, K., Luo, Y. & Strauf, S. Near-unity light collection efficiency from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 13, 6992–6997 (2019).

    Article  CAS  Google Scholar 

  • Vogl, T., Lecamwasam, R., Buchler, B. C., Lu, Y. & Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photon. 6, 1955–1962 (2019).

    Article  CAS  Google Scholar 

  • Fröch, J. E. et al. Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities. ACS Nano 14, 7085–7091 (2020).

    Article  Google Scholar 

  • Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  Google Scholar 

  • Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  CAS  Google Scholar 

  • Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Article  Google Scholar 

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  CAS  Google Scholar 

  • Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Every-other-layer dipolar excitons in a spin–valley locked superlattice. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01350-1 (2023).

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  CAS  Google Scholar 

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  • Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  Google Scholar 

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  • Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).

    Article  CAS  Google Scholar 

  • Li, F., Wei, W., Zhao, P., Huang, B. & Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8, 5959–5965 (2017).

    Article  CAS  Google Scholar 

  • Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  Google Scholar 

  • Qin, Y. et al. Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater. 34, 2106222 (2022).

    Article  CAS  Google Scholar 

  • Gan, Z. et al. Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater. 34, 2205226 (2022).

    Article  CAS  Google Scholar 

  • Van Tuan, D. et al. Six-Body and Eight-Body Exciton States in Monolayer WSe2. Phys. Rev. Lett. 129, 076801 (2022).

    Article  CAS  Google Scholar 

  • Gao, T., v. Helversen, M., Anton-Solanas, C., Schneider, C. & Heindel, T. Atomically-thin single-photon sources for quantum communication. npj 2D Mater. Appl. 7, 4 (2022).

    Article  Google Scholar 

  • So, J.-P. et al. Polarization control of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021).

    Article  CAS  Google Scholar 

  • White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019).

    Article  CAS  Google Scholar 

  • Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article  Google Scholar 

  • Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photon. 4, 768–773 (2017).

    Article  CAS  Google Scholar 

  • Vogl, T. et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10, 1202 (2019).

    Article  Google Scholar 

  • Vogl, T., Knopf, H., Weissflog, M., Lam, P. K. & Eilenberger, F. Sensitive single-photon test of extended quantum theory with two-dimensional hexagonal boron nitride. Phys. Rev. Res. 3, 013296 (2021).

    Article  CAS  Google Scholar 

  • Zeng, H. Z. J. et al. Integrated room temperature single-photon source for quantum key distribution. Opt. Lett. 47, 1673–1676 (2022).

    Article  CAS  Google Scholar 

  • Samaner, Ç., Paçal, S., Mutlu, G., Uyanık, K. & Ates, S. Free-space quantum key distribution with single photons from defects in hexagonal boron nitride. Adv. Quantum Technol. 5, 2200059 (2022).

    Article  CAS  Google Scholar 

  • Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).

    Article  CAS  Google Scholar 

  • Mukherjee, A. et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020).

    Article  CAS  Google Scholar 

  • He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).

    Article  CAS  Google Scholar 

  • Young, R. J. et al. Entangled photons from the biexciton cascade of quantum dots. J. Appl. Phys. 101, 081711 (2007).

    Article  Google Scholar 

  • Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

    Article  CAS  Google Scholar 

  • Lu, X. et al. Optical initialization of a single spin–valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Spin–valley locking effect in defect states of monolayer MoS2. Nano Lett. 20, 2129–2136 (2020).

    Article  CAS  Google Scholar 

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  CAS  Google Scholar 

  • Morell, N. et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).

    Article  CAS  Google Scholar 

  • Xie, H. et al. Tunable exciton–optomechanical coupling in suspended monolayer MoSe2. Nano Lett. 21, 2538–2543 (2021).

    Article  CAS  Google Scholar 

  • Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit quality factors exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).

    CAS  Google Scholar 

  • Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    Article  CAS  Google Scholar 

  • Patel, S. D. et al. Surface acoustic wave cavity optomechanics with WSe2 single photon emitters. Preprint at https://arxiv.org/abs/2211.15811 (2022).

  • Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    Article  CAS  Google Scholar 

  • Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  Google Scholar 

  • Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

    Article  CAS  Google Scholar 

  • Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    Article  CAS  Google Scholar 

  • Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  CAS  Google Scholar 

  • Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).

    Article  CAS  Google Scholar 

  • Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).

    Article  CAS  Google Scholar 

  • Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen–vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

    Article  CAS  Google Scholar 

  • Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  Google Scholar 

  • Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).

    Article  CAS  Google Scholar 

  • Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).

    Article  CAS  Google Scholar 

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article  CAS  Google Scholar 

  • Husimi, K. & Syôzi, I. The statistics of honeycomb and triangular lattice. I. Prog. Theor. Phys. 5, 177–186 (1950).

    Article  Google Scholar 

  • Kanamori, J. Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30, 275–289 (1963).

    Article  CAS  Google Scholar 

  • Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).

    Article  CAS  Google Scholar 

  • Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  Google Scholar 

  • Yagmurcukardes, M. et al. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020).

    Article  CAS  Google Scholar 

  • Riis-Jensen, A. C., Pandey, M. & Thygesen, K. S. Efficient charge separation in 2D Janus van der Waals structures with built-in electric fields and intrinsic p–n doping. J. Phys. Chem. C. 122, 24520–24526 (2018).

    Article  CAS  Google Scholar 

  • Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  • Guo, H., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    Article  CAS  Google Scholar 

  • Zhang, Z. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).

    Article  CAS  Google Scholar 

  • Guo, Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl Acad. Sci. USA 118, e2106124118 (2021).

    Article  CAS  Google Scholar 

  • Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  • Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  • Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  Google Scholar 

  • Cheng, R. et al. Broadband on-chip single-photon spectrometer. Nat. Commun. 10, 4104 (2019).

    Article  Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  • Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  CAS  Google Scholar 

  • Orchin, G. J. et al. Niobium diselenide superconducting photodetectors. Appl. Phys. Lett. 114, 251103 (2019).

    Article  Google Scholar 

  • Seifert, P. et al. A high-Tc van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. 8, 035053 (2021).

    Article  CAS  Google Scholar 

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    Article  CAS  Google Scholar 

  • Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).

    Article  CAS  Google Scholar 

  • Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).

    Article  CAS  Google Scholar 

  • Avdeev, I. D. & Smirnov, D. S. Hyperfine interaction in atomically thin transition metal dichalcogenides. Nanoscale Adv. 1, 2624–2632 (2019).

    Article  CAS  Google Scholar 

  • Winter, M. Molybdenum: isotope data. WebElements http://www.webelements.com/molybdenum/isotopes.html (2023).

  • Fanciulli, M. Electron paramagnetic resonance and relaxation in BN and BN:C. Philos. Mag. B 76, 363–381 (1997).

    Article  CAS  Google Scholar 

  • Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

    Article  CAS  Google Scholar 

  • Murzakhanov, F. F. et al. Electron–nuclear coherent coupling and nuclear spin readout through optically polarized VB spin states in hBN. Nano Lett. 22, 2718–2724 (2022).

    Article  CAS  Google Scholar 

  • Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024–1028 (2022).

    Article  CAS  Google Scholar 

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  CAS  Google Scholar 

  • Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article  CAS  Google Scholar 

  • Hermans, S. L. N. et al. Entangling remote qubits using the single-photon protocol: an in-depth theoretical and experimental study. New J. Phys. 25, 013011 (2023).

    Article  Google Scholar 

  • Michaels, C. P. et al. Multidimensional cluster states using a single spin–photon interface coupled strongly to an intrinsic nuclear register. Quantum 5, 565 (2021).

    Article  Google Scholar 

  • Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    Article  Google Scholar 

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article  CAS  Google Scholar 

  • Li, W. et al. Local sensing of correlated electrons in dual-moiré heterostructures using dipolar excitons. Preprint at https://arxiv.org/abs/2111.09440 (2021).

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  CAS  Google Scholar 

  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    Article  CAS  Google Scholar 

  • Dirnberger, F. et al. Quasi-1D exciton channels in strain-engineered 2D materials. Sci. Adv. 7, eabj3066 (2021).

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    Article  CAS  Google Scholar 

  • Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  Google Scholar 

  • Stefan, L. et al. Multiangle reconstruction of domain morphology with all-optical diamond magnetometry. Phys. Rev. Appl. 16, 014054 (2021).

    Article  CAS  Google Scholar 

  • Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photon. 8, 1069–1076 (2021).

    Article  CAS  Google Scholar 

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  Google Scholar 

  • Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  CAS  Google Scholar 

  • Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  • Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).

    Article  CAS  Google Scholar 

  • Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article  CAS  Google Scholar 

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  • Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article  CAS  Google Scholar 

  • Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    Article  CAS  Google Scholar 

  • Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  • Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology