Large second-order susceptibility from a quantized indium tin oxide monolayer - Nature Nanotechnology

Large second-order susceptibility from a quantized indium tin oxide monolayer – Nature Nanotechnology

Source Node: 2435835
  • Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    Article  CAS  Google Scholar 

  • Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

    Article  CAS  Google Scholar 

  • Liu, J. et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX 2, 5 (2021).

    Article  Google Scholar 

  • Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

    Article  CAS  Google Scholar 

  • Hazan, A. et al. MXene-nanoflakes-enabled all-optical nonlinear activation function for on-chip photonic deep neural networks. Adv. Mater. 35, 2210216 (2023).

    Article  CAS  Google Scholar 

  • Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    Article  CAS  Google Scholar 

  • Qian, H. et al. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl. 8, 13 (2019).

    Article  Google Scholar 

  • Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article  Google Scholar 

  • Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photon. 15, 493–498 (2021).

    Article  CAS  Google Scholar 

  • Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).

    Article  CAS  Google Scholar 

  • Song, Y. et al. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 6, 1701287 (2018).

    Article  Google Scholar 

  • Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photon. 2, 1584–1591 (2015).

    Article  CAS  Google Scholar 

  • Rosencher, E. et al. Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996).

    Article  CAS  Google Scholar 

  • Jang, J., Kang, Y., Cha, D., Bae, J. & Lee, S. Thin-film optical devices based on transparent conducting oxides: physical mechanisms and applications. Crystals https://doi.org/10.3390/cryst9040192 (2019).

  • Jin, S. et al. Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and In-doped CdO thin films grown by MOCVD. Chem. Mater. 20, 220–230 (2008).

    Article  CAS  Google Scholar 

  • Ma, Z., Li, Z., Liu, K., Ye, C. & Sorger, V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophoton. 4, 198–213 (2015).

    Article  CAS  Google Scholar 

  • Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020).

    Article  CAS  Google Scholar 

  • Dong, Z. et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. https://doi.org/10.1021/acs.nanolett.5b02109 (2015).

  • Li, S.-Q. et al. Dramatically enhanced second harmonic generation in Janus group-III chalcogenide monolayers. Adv. Opt. Mater. 10, 2200076 (2022).

    Article  CAS  Google Scholar 

  • Alam, M., De Leon, I. & Boyd, R. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science https://doi.org/10.1126/science.aae0330 (2016).

  • Butet, J., Brevet, P.-F. & Martin, O. J. F. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015).

    Article  CAS  Google Scholar 

  • De Liberato, S. Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).

    Article  Google Scholar 

  • Datta, R. S. et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020).

    Article  CAS  Google Scholar 

  • Li, Q. et al. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. npj 2D Mater. Appl. https://doi.org/10.1038/s41699-021-00219-y (2021).

  • Jannat, A. et al. Printable single-unit-cell-thick transparent zinc-doped indium oxides with efficient electron transport properties. ACS Nano 15, 4045–4053 (2021).

    Article  CAS  Google Scholar 

  • Lin, K.-Q. et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 12, 1553 (2021).

    Article  CAS  Google Scholar 

  • Eckardt, R. & Reintjes, J. Phase matching limitations of high efficiency second harmonic generation. IEEE J. Quantum Electron. 20, 1178–1187 (1984).

    Article  Google Scholar 

  • Lahon, S., Jha, P. K. & Mohan, M. Nonlinear interband and intersubband transitions in quantum dots for multiphoton photodetectors. J. Appl. Phys. 109, 054311 (2011).

    Article  Google Scholar 

  • Aukarasereenont, P. et al. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem. Soc. Rev. https://doi.org/10.1039/d1cs01166a (2022).

  • Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035–1041 (2018).

    Article  CAS  Google Scholar 

  • Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

  • Bennett, H. S. Heavy doping effects on bandgaps, effective intrinsic carrier concentrations and carrier mobilities and lifetimes. Solid-State Electron. 28, 193–200 (1985).

    Article  Google Scholar 

  • Shen, Y., Lou, Y., Wang, Z. & Xu, X. In-situ growth and characterization of indium tin oxide nanocrystal rods. Coatings https://doi.org/10.3390/coatings7120212 (2017).

  • Yu, W. J. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 7, 13278 (2016).

    Article  CAS  Google Scholar 

  • Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    Article  CAS  Google Scholar 

  • Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  CAS  Google Scholar 

  • Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    Article  CAS  Google Scholar 

  • Shree, S. et al. Interlayer exciton mediated second harmonic generation in bilayer MoS2. Nat. Commun. 12, 6894 (2021).

    Article  CAS  Google Scholar 

  • Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev. 10, 569–587 (2016).

    Article  CAS  Google Scholar 

  • Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, 1606128 (2017).

    Article  Google Scholar 

  • Khan, A. R. et al. Optical harmonic generation in 2D materials. Adv. Funct. Mater. 32, 2105259 (2022).

    Article  CAS  Google Scholar 

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  • Wu, Z.-J. et al. Nonlinear plasmonic frequency conversion through quasiphase matching. Phys. Rev. B https://doi.org/10.1103/PhysRevB.82.155107 (2010).

  • Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article  CAS  Google Scholar 

  • Setzpfandt, F. et al. Tunable generation of entangled photons in a nonlinear directional coupler. Laser Photon. Rev. 10, 131–136 (2016).

    Article  Google Scholar 

  • Yin, P. et al. 2D materials for nonlinear photonics and electro-optical applications. Adv. Mater. Interfaces 8, 2100367 (2021).

    Article  Google Scholar 

  • Li, Y. et al. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev. 9, 427–434 (2015).

    Article  CAS  Google Scholar 

  • Erhart, P., Klein, A., Egdell, R. G. & Albe, K. Band structure of indium oxide: indirect versus direct band gap. Phys. Rev. B 75, 153205 (2007).

    Article  Google Scholar 

  • Lin, J.-J. & Li, Z.-Q. Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. Condens. Matter 26, 343201 (2014).

    Article  Google Scholar 

  • Varley, J. B. & Schleife, A. Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3. Semicond. Sci. Technol. https://doi.org/10.1088/0268-1242/30/2/024010 (2015).

  • Tang, Y. L., Huang, C. H. & Nomura, K. Vacuum-free liquid-metal-printed 2D indium-tin oxide thin-film transistor for oxide inverters. ACS Nano 16, 3280–3289 (2022).

    Article  CAS  Google Scholar 

  • Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology