Metabolic engineering for sustainability and health

Metabolic engineering for sustainability and health

Source Node: 1890234
    • Jang W.D.
    • et al.

    An interactive metabolic map of bio-based chemicals.

    Trends Biotechnol. 2022; 41: 10-14

    • Kacser H.
    • Burns J.A.

    The control of flux.

    Symp. Soc. Exp. Biol. 1973; 27: 65-104

    • Seressiotis A.
    • Bailey J.E.

    MPS: an algorithm and data base for metabolic pathway synthesis.

    Biotechnol. Lett. 1986; 8: 837-842

    • Rogers P.
    • et al.

    Ethanol production by Zymomonas mobilis.

    in: Microbial Reactions. Springer, 1982: 37-84

    • Jones D.T.
    • Woods D.R.

    Acetone-butanol fermentation revisited.

    Microbiol. Rev. 1986; 50: 484-524

  • Polymer synthesis by microorganisms: technology and economics.

    Trends Biotechnol. 1987; 5: 246-250

  • Ingram, L.O. et al. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes, US5000000A, University of Florida Research Foundation Inc

    • Schubert P.
    • et al.

    Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli.

    J. Bacteriol. 1988; 170: 5837-5847

    • Tong I.T.
    • et al.

    1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon.

    Appl. Environ. Microbiol. 1991; 57: 3541-3546

    • Anderson S.
    • et al.

    Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola.

    Science. 1985; 230: 144-149

    • Wendisch V.F.

    Metabolic engineering advances and prospects for amino acid production.

    Metab. Eng. 2020; 58: 17-34

    • Wolf S.
    • et al.

    Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being.

    Essays Biochem. 2021; 65: 197-212

    • Stephanopoulos G.
    • et al.

    Metabolic Engineering: Principles and Methodologies.

    Academic Press, 1998

    • Lee S.Y.
    • et al.

    Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli.

    J. Biotechnol. 1994; 32: 203-211

    • Wang F.
    • Lee S.Y.

    Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli.

    Appl. Environ. Microbiol. 1997; 63: 4765-4769

    • Koch A.K.
    • et al.

    Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production.

    Nat. Biotechnol. 1988; 6: 1335-1339

    • Winter R.B.
    • et al.

    Efficient degradation of trichloroethylene by a recombinant Escherichia coli.

    Nat. Biotechnol. 1989; 7: 282-285

    • Bailey J.E.

    Toward a science of metabolic engineering.

    Science. 1991; 252: 1668-1675

    • Fleischmann R.D.
    • et al.

    Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.

    Science. 1995; 269: 496-512

    • Goffeau A.
    • et al.

    Life with 6000 genes.

    Science. 1996; 274: 546-567

    • Blattner F.R.
    • et al.

    The complete genome sequence of Escherichia coli K-12.

    Science. 1997; 277: 1453-1462

    • Edwards J.S.
    • Palsson B.O.

    Systems properties of the Haemophilus influenzae Rd metabolic genotype.

    J. Biol. Chem. 1999; 274: 17410-17416

    • Edwards J.S.
    • Palsson B.O.

    The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities.

    Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 5528-5533

    • Han M.J.
    • Lee S.Y.

    Proteome profiling and its use in metabolic and cellular engineering.

    Proteomics. 2003; 3: 2317-2324

    • Bro C.
    • Nielsen J.

    Impact of ‘ome’ analyses on inverse metabolic engineering.

    Metab. Eng. 2004; 6: 204-211

    • Park S.J.
    • et al.

    Global physiological understanding and metabolic engineering of microorganisms based on omics studies.

    Appl. Microbiol. Biotechnol. 2005; 68: 567-579

    • Xia X.X.
    • et al.

    Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 14059-14063

    • Lee S.J.
    • et al.

    Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation.

    Appl. Environ. Microbiol. 2005; 71: 7880-7887

    • Fong S.S.
    • et al.

    In silico design and adaptive evolution of Escherichia coli for production of lactic acid.

    Biotechnol. Bioeng. 2005; 91: 643-648

    • Alper H.
    • et al.

    Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.

    Metab. Eng. 2005; 7: 155-164

    • Choi H.S.
    • et al.

    In silico identification of gene amplification targets for improvement of lycopene production.

    Appl. Environ. Microbiol. 2010; 76: 3097-3105

    • Park J.H.
    • et al.

    Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation.

    Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 7797-7802

    • Becker J.
    • et al.

    From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.

    Metab. Eng. 2011; 13: 159-168

    • Sanchez B.J.
    • et al.

    Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.

    Mol. Syst. Biol. 2017; 13: 935

    • O’Brien E.J.
    • et al.

    Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction.

    Mol. Syst. Biol. 2013; 9: 693

    • Gu C.
    • et al.

    Current status and applications of genome-scale metabolic models.

    Genome Biol. 2019; 20: 121

    • Fang X.
    • et al.

    Reconstructing organisms in silico: genome-scale models and their emerging applications.

    Nat. Rev. Microbiol. 2020; 18: 731-743

    • Miller J.C.
    • et al.

    A TALE nuclease architecture for efficient genome editing.

    Nat. Biotechnol. 2011; 29: 143-148

    • Carroll D.

    Genome engineering with zinc-finger nucleases.

    Genetics. 2011; 188: 773-782

    • Wang H.H.
    • et al.

    Programming cells by multiplex genome engineering and accelerated evolution.

    Nature. 2009; 460: 894-898

    • Jiang W.
    • et al.

    RNA-guided editing of bacterial genomes using CRISPR-Cas systems.

    Nat. Biotechnol. 2013; 31: 233-239

    • Na D.
    • et al.

    Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs.

    Nat. Biotechnol. 2013; 31: 170-174

    • Noh M.
    • et al.

    Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli.

    Cell Syst. 2017; 5: 418-426

    • Dong C.
    • et al.

    Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria.

    Nat. Commun. 2018; 9: 2489

    • Qi L.S.
    • et al.

    Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

    Cell. 2021; 184: 844

    • Blazeck J.
    • Alper H.S.

    Promoter engineering: recent advances in controlling transcription at the most fundamental level.

    Biotechnol. J. 2013; 8: 46-58

    • Mutalik V.K.
    • et al.

    Precise and reliable gene expression via standard transcription and translation initiation elements.

    Nat. Methods. 2013; 10: 354-360

    • Salis H.M.
    • et al.

    Automated design of synthetic ribosome binding sites to control protein expression.

    Nat. Biotechnol. 2009; 27: 946-950

    • Ajikumar P.K.
    • et al.

    Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.

    Science. 2010; 330: 70-74

    • Dueber J.E.
    • et al.

    Synthetic protein scaffolds provide modular control over metabolic flux.

    Nat. Biotechnol. 2009; 27: 753-759

    • Avalos J.L.
    • et al.

    Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.

    Nat. Biotechnol. 2013; 31: 335-341

    • Lawrence A.D.
    • et al.

    Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor.

    ACS Synth. Biol. 2014; 3: 454-465

    • Lee J.W.
    • et al.

    Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    Nat. Chem. Biol. 2012; 8: 536-546

    • Lee S.Y.
    • Kim H.U.

    Systems strategies for developing industrial microbial strains.

    Nat. Biotechnol. 2015; 33: 1061-1072

    • Lee S.Y.
    • et al.

    A comprehensive metabolic map for production of bio-based chemicals.

    Nat. Catal. 2019; 2: 18-33

    • Lin G.-M.
    • et al.

    Retrosynthetic design of metabolic pathways to chemicals not found in nature.

    Curr. Opin. Syst. Biol. 2019; 14: 82-107

    • Yim H.
    • et al.

    Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.

    Nat. Chem. Biol. 2011; 7: 445-452

    • Rodriguez G.M.
    • et al.

    Expanding ester biosynthesis in Escherichia coli.

    Nat. Chem. Biol. 2014; 10: 259-265

    • Chae T.U.
    • et al.

    Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams.

    Metab. Eng. 2017; 41: 82-91

    • Yang J.E.
    • et al.

    One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains.

    Nat. Commun. 2018; 9: 79

    • Arnold F.H.

    Combinatorial and computational challenges for biocatalyst design.

    Nature. 2001; 409: 253-257

    • Atsumi S.
    • et al.

    Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.

    Nature. 2008; 451: 86-89

    • Jung Y.K.
    • et al.

    Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers.

    Biotechnol. Bioeng. 2010; 105: 161-171

    • Biz A.
    • et al.

    Systems biology based metabolic engineering for non-natural chemicals.

    Biotechnol. Adv. 2019; 37107379

    • Cho J.S.
    • et al.

    Designing microbial cell factories for the production of chemicals.

    JACS Au. 2022; 2: 1781-1799

    • Ro D.K.
    • et al.

    Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

    Nature. 2006; 440: 940-943

    • Nakagawa A.
    • et al.

    A bacterial platform for fermentative production of plant alkaloids.

    Nat. Commun. 2011; 2: 326

    • Yang D.
    • et al.

    Metabolic engineering of Escherichia coli for natural product biosynthesis.

    Trends Biotechnol. 2020; 38: 745-765

    • Kim G.B.
    • et al.

    Machine learning applications in systems metabolic engineering.

    Curr. Opin. Biotechnol. 2020; 64: 1-9

    • Ahn J.H.
    • et al.

    Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase.

    Nat. Commun. 2020; 11: 1970

    • Han T.
    • et al.

    Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 30328-30334

    • Zhao M.
    • et al.

    Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway.

    Metab. Eng. 2018; 47: 254-262

    • Raynaud C.
    • et al.

    Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum.

    Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 5010-5015

    • Yun J.
    • et al.

    Co-fermentation of glycerol and glucose by a co-culture system of engineered Escherichia coli strains for 1,3-propanediol production without vitamin B12 supplementation.

    Bioresour. Technol. 2021; 319124218

    • Frazao C.J.R.
    • et al.

    Construction of a synthetic pathway for the production of 1,3-propanediol from glucose.

    Sci. Rep. 2019; 9: 11576

    • Zhong W.
    • et al.

    Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose.

    ACS Synth. Biol. 2019; 8: 587-595

    • Li Z.
    • et al.

    Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate.

    ACS Synth. Biol. 2021; 10: 478-486

    • Li Z.
    • et al.

    Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.

    Metab. Eng. 2022; 70: 79-88

    • Ma H.
    • et al.

    Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine.

    Nat. Commun. 2020; 11: 3313

    • Ye J.W.
    • Chen G.Q.

    Halomonas as a chassis.

    Essays Biochem. 2021; 65: 393-403

    • Mizuno S.
    • et al.

    Biosynthesis of polyhydroxyalkanoates containing 2-hydroxy-4-methylvalerate and 2-hydroxy-3-phenylpropionate units from a related or unrelated carbon source.

    J. Biosci. Bioeng. 2018; 125: 295-300

    • Yang J.E.
    • et al.

    Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli.

    Biotechnol. J. 2016; 11: 1572-1585

    • Choi S.Y.
    • et al.

    One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli.

    Nat. Biotechnol. 2016; 34: 435-440

    • Choi S.Y.
    • et al.

    Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.

    Metab. Eng. 2020; 58: 47-81

    • Liu Y.
    • et al.

    Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups.

    Nat. Commun. 2022; 13: 1595

    • Kim D.I.
    • et al.

    Microbial production of multiple short-chain primary amines via retrobiosynthesis.

    Nat. Commun. 2021; 12: 173

    • Basak A.K.
    • et al.

    The role of microbes in biofuel production.

    in: Kumar N. Biofuel from Microbes and Plants: Green Energy Alternative. 1st edn. CRC Press, 2021: 63

    • Ramamurthy P.C.
    • et al.

    Microbial biotechnological approaches: renewable bioprocessing for the future energy systems.

    Microb. Cell Factories. 2021; 20: 55

    • Liu Y.
    • et al.

    Biofuels for a sustainable future.

    Cell. 2021; 184: 1636-1647

    • Keasling J.
    • et al.

    Microbial production of advanced biofuels.

    Nat. Rev. Microbiol. 2021; 19: 701-715

    • Gray K.A.
    • et al.

    Bioethanol.

    Curr. Opin. Chem. Biol. 2006; 10: 141-146

    • Moon H.G.
    • et al.

    One hundred years of clostridial butanol fermentation.

    FEMS Microbiol. Lett. 2016; 363e02683–18

    • Zabed H.
    • et al.

    Bioethanol production from renewable sources: current perspectives and technological progress.

    Renew. Sustain. Energy Rev. 2017; 71: 475-501

    • Xue C.
    • et al.

    Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum.

    Biotechnol. Adv. 2017; 35: 310-322

    • Jang Y.S.
    • et al.

    Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.

    mBio. 2012; 3e00314–12

    • Ingram L.O.
    • et al.

    Genetic engineering of ethanol production in Escherichia coli.

    Appl. Environ. Microbiol. 1987; 53: 2420-2425

    • Ohta K.
    • et al.

    Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    Appl. Environ. Microbiol. 1991; 57: 893-900

    • Walfridsson M.
    • et al.

    Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation.

    Appl. Microbiol. Biotechnol. 1997; 48: 218-224

    • Bro C.
    • et al.

    In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.

    Metab. Eng. 2006; 8: 102-111

    • Zhou H.
    • et al.

    Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    Metab. Eng. 2012; 14: 611-622

    • Guadalupe Medina V.
    • et al.

    Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    Appl. Environ. Microbiol. 2010; 76: 190-195

    • Alper H.
    • et al.

    Engineering yeast transcription machinery for improved ethanol tolerance and production.

    Science. 2006; 314: 1565-1568

    • Wei N.
    • et al.

    Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.

    Nat. Commun. 2013; 4: 2580

    • Choi Y.J.
    • Lee S.Y.

    Microbial production of short-chain alkanes.

    Nature. 2013; 502: 571-574

    • Sheppard M.J.
    • et al.

    Modular and selective biosynthesis of gasoline-range alkanes.

    Metab. Eng. 2016; 33: 28-40

    • Dellomonaco C.
    • et al.

    Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals.

    Nature. 2011; 476: 355-359

    • Xu P.
    • et al.

    Modular optimization of multi-gene pathways for fatty acids production in E. coli.

    Nat. Commun. 2013; 4: 1409

    • Zhou Y.J.
    • et al.

    Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    Nat. Commun. 2016; 7: 11709

    • Yu T.
    • et al.

    Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis.

    Cell. 2018; 174: 1549-1558

    • Yu T.
    • et al.

    Metabolic reconfiguration enables synthetic reductive metabolism in yeast.

    Nat. Metab. 2022; 4: 1551-1559

    • Kim H.M.
    • et al.

    Engineering of an oleaginous bacterium for the production of fatty acids and fuels.

    Nat. Chem. Biol. 2019; 15: 721-729

    • Zhang F.
    • et al.

    Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids.

    Nat. Biotechnol. 2012; 30: 354-359

    • Steen E.J.
    • et al.

    Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

    Nature. 2010; 463: 559-562

    • Xu P.
    • et al.

    Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals.

    Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 10848-10853

    • Yu K.O.
    • et al.

    Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Biotechnol. Bioeng. 2012; 109: 110-115

    • Ozaydin B.
    • et al.

    Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.

    Metab. Eng. 2013; 15: 174-183

    • Meadows A.L.
    • et al.

    Rewriting yeast central carbon metabolism for industrial isoprenoid production.

    Nature. 2016; 537: 694-697

    • Dusseaux S.
    • et al.

    Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 31789-31799

    • Grewal P.S.
    • et al.

    Peroxisome compartmentalization of a toxic enzyme improves alkaloid production.

    Nat. Chem. Biol. 2021; 17: 96-103

    • Liu Q.
    • et al.

    Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction.

    Metab. Eng. 2015; 28: 82-90

    • Cruz-Morales P.
    • et al.

    Biosynthesis of polycyclopropanated high energy biofuels.

    Joule. 2022; 6: 1590-1605

    • Bruder S.
    • et al.

    Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica.

    Biotechnol. Biofuels. 2019; 12: 202

    • Sorigue D.
    • et al.

    An algal photoenzyme converts fatty acids to hydrocarbons.

    Science. 2017; 357: 903-907

    • Li J.
    • et al.

    Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism.

    Nat. Commun. 2020; 11: 6198

    • Qiao K.
    • et al.

    Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism.

    Nat. Biotechnol. 2017; 35: 173-177

    • Love C.R.
    • et al.

    Microbial production and consumption of hydrocarbons in the global ocean.

    Nat. Microbiol. 2021; 6: 489-498

    • Shi S.
    • et al.

    Synthetic biology: a new frontier in food production.

    Trends Biotechnol. 2022; 40: 781-803

    • Luo Z.W.
    • et al.

    Microbial production of methyl anthranilate, a grape flavor compound.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 10749-10756

    • Denby C.M.
    • et al.

    Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer.

    Nat. Commun. 2018; 9: 965

    • Yang D.
    • et al.

    Production of rainbow colorants by metabolically engineered Escherichia coli.

    Adv. Sci. 2021; 8e2100743

    • Prabowo C.P.S.
    • et al.

    Production of natural colorants by metabolically engineered microorganisms.

    Trends Chem. 2022; 4: 608-626

    • Yang D.
    • et al.

    Production of carminic acid by metabolically engineered Escherichia coli.

    J. Am. Chem. Soc. 2021; 143: 5364-5377

    • Zhao X.R.
    • et al.

    Metabolic engineering of Escherichia coli for secretory production of free haem.

    Nat. Catal. 2018; 1: 720-728

    • Ishchuk O.P.
    • et al.

    Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae.

    Proc. Natl. Acad. Sci. U. S. A. 2022; 119e2108245119

    • Choi K.R.
    • et al.

    Improved production of heme using metabolically engineered Escherichia coli.

    Biotechnol. Bioeng. 2022; 119: 3178-3193

    • Blin K.
    • et al.

    antiSMASH 6.0: improving cluster detection and comparison capabilities.

    Nucleic Acids Res. 2021; 49: W29-W35

    • Skinnider M.A.
    • et al.

    Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences.

    Nat. Commun. 2020; 11: 6058

    • Zheng S.
    • et al.

    Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP.

    Nat. Commun. 2022; 13: 3342

    • Hafner J.
    • et al.

    A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives.

    Nat. Commun. 2021; 12: 1760

    • Park S.Y.
    • et al.

    Metabolic engineering of Escherichia coli with electron channelling for the production of natural products.

    Nat. Catal. 2022; : 1-12

    • Galanie S.
    • et al.

    Complete biosynthesis of opioids in yeast.

    Science. 2015; 349: 1095-1100

    • Luo X.
    • et al.

    Complete biosynthesis of cannabinoids and their unnatural analogues in yeast.

    Nature. 2019; 567: 123-126

    • Srinivasan P.
    • Smolke C.D.

    Biosynthesis of medicinal tropane alkaloids in yeast.

    Nature. 2020; 585: 614-619

    • Ma Y.
    • et al.

    Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica.

    Metab. Eng. 2021; 68: 152-161

    • Ma Y.
    • et al.

    Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica.

    Nat. Commun. 2022; 13: 572

    • Zhang J.
    • et al.

    A microbial supply chain for production of the anti-cancer drug vinblastine.

    Nature. 2022; 609: 341-347

    • Jain M.
    • et al.

    Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater.

    Bioresour. Technol. 2022; 344126305

    • Singh A.
    • et al.

    Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate).

    Joule. 2021; 5: 2479-2503

    • Yoshida S.
    • et al.

    A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science. 2016; 351: 1196-1199

    • Austin H.P.
    • et al.

    Characterization and engineering of a plastic-degrading aromatic polyesterase.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E4350-E4357

    • Joo S.
    • et al.

    Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Nat. Commun. 2018; 9: 382

    • Son H.F.
    • et al.

    Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation.

    ACS Catal. 2019; 9: 3519-3526

    • Son H.F.
    • et al.

    Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis.

    Enzym. Microb. Technol. 2020; 141109656

    • Cui Y.
    • et al.

    Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy.

    ACS Catal. 2021; 11: 1340-1350

    • Palm G.J.
    • et al.

    Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate.

    Nat. Commun. 2019; 10: 1717

    • Sagong H.-Y.
    • et al.

    Decomposition of the PET film by MHETase using Exo-PETase function.

    ACS Catal. 2020; 10: 4805-4812

    • Knott B.C.
    • et al.

    Characterization and engineering of a two-enzyme system for plastics depolymerization.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 25476-25485

    • Bell E.L.
    • et al.

    Directed evolution of an efficient and thermostable PET depolymerase.

    Nat. Catal. 2022; 5: 673-681

    • Lu H.
    • et al.

    Machine learning-aided engineering of hydrolases for PET depolymerization.

    Nature. 2022; 604: 662-667

    • Tournier V.
    • et al.

    An engineered PET depolymerase to break down and recycle plastic bottles.

    Nature. 2020; 580: 216-219

    • Zhu B.
    • et al.

    Enzyme discovery and engineering for sustainable plastic recycling.

    Trends Biotechnol. 2022; 40: 22-37

    • Zhang Z.
    • et al.

    Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae.

    Nat. Commun. 2022; 13: 5360

    • Sanluis-Verdes A.
    • et al.

    Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella.

    Nat. Commun. 2022; 13: 5568

    • Tiso T.
    • et al.

    Towards bio-upcycling of polyethylene terephthalate.

    Metab. Eng. 2021; 66: 167-178

    • Sullivan K.P.
    • et al.

    Mixed plastics waste valorization through tandem chemical oxidation and biological funneling.

    Science. 2022; 378: 207-211

    • Santos-Merino M.
    • et al.

    New applications of synthetic biology tools for cyanobacterial metabolic engineering.

    Front. Bioeng. Biotechnol. 2019; 7: 33

    • Pavan M.
    • et al.

    Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy.

    Metab. Eng. 2022; 71: 117-141

    • Atsumi S.
    • et al.

    Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde.

    Nat. Biotechnol. 2009; 27: 1177-1180

    • Liew F.E.
    • et al.

    Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.

    Nat. Biotechnol. 2022; 40: 335-344

    • Liu Z.
    • et al.

    Third-generation biorefineries as the means to produce fuels and chemicals from CO2.

    Nat. Catal. 2020; 3: 274-288

    • Gleizer S.
    • et al.

    Conversion of Escherichia coli to generate all biomass carbon from CO2.

    Cell. 2019; 179: 1255-1263 e12

    • Bang J.
    • et al.

    Escherichia coli is engineered to grow on CO2 and formic acid.

    Nat. Microbiol. 2020; 5: 1459-1463

    • Chen F.Y.
    • et al.

    Converting Escherichia coli to a synthetic methylotroph growing solely on methanol.

    Cell. 2020; 182: 933-946

    • Li H.
    • et al.

    Integrated electromicrobial conversion of CO2 to higher alcohols.

    Science. 2012; 335: 1596

    • Stockl M.
    • et al.

    From CO2 to bioplastic – coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis.

    ChemSusChem. 2020; 13: 4086-4093

    • Cohen S.N.
    • et al.

    Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA.

    Proc. Natl. Acad. Sci. U. S. A. 1972; 69: 2110-2114

    • Cohen S.N.
    • et al.

    Construction of biologically functional bacterial plasmids in vitro.

    Proc. Natl. Acad. Sci. U. S. A. 1973; 70: 3240-3244

    • Sanger F.
    • et al.

    DNA sequencing with chain-terminating inhibitors.

    Proc. Natl. Acad. Sci. U. S. A. 1977; 74: 5463-5467

    • Itakura K.
    • et al.

    Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin.

    Science. 1977; 198: 1056-1063

    • Goeddel D.V.
    • et al.

    Expression in Escherichia coli of chemically synthesized genes for human insulin.

    Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 106-110

  • PCR: thirty-five years and counting.

    Science. 2018; 360: 670-672

    • Altschul S.F.
    • et al.

    Basic local alignment search tool.

    J. Mol. Biol. 1990; 215: 403-410

    • Savinell J.M.
    • Palsson B.O.

    Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism.

    J. Theor. Biol. 1992; 154: 421-454

    • Baudin A.
    • et al.

    A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae.

    Nucleic Acids Res. 1993; 21: 3329-3330

    • Schuster S.
    • Hilgetag C.

    On elementary flux modes in biochemical reaction systems at steady state.

    J. Biol. Syst. 2011; 02: 165-182

    • Zupke C.
    • Stephanopoulos G.

    Intracellular flux analysis in hybridomas using mass balances and in vitro 13C NMR.

    Biotechnol. Bioeng. 1995; 45: 292-303

    • Zhang Y.
    • et al.

    A new logic for DNA engineering using recombination in Escherichia coli.

    Nat. Genet. 1998; 20: 123-128

    • Datsenko K.A.
    • Wanner B.L.

    One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.

    Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 6640-6645

    • Zhang Y.X.
    • et al.

    Genome shuffling leads to rapid phenotypic improvement in bacteria.

    Nature. 2002; 415: 644-646

    • Patnaik R.
    • et al.

    Genome shuffling of Lactobacillus for improved acid tolerance.

    Nat. Biotechnol. 2002; 20: 707-712

    • Segre D.
    • et al.

    Analysis of optimality in natural and perturbed metabolic networks.

    Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 15112-15117

    • Mahadevan R.
    • Schilling C.H.

    The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

    Metab. Eng. 2003; 5: 264-276

    • Burgard A.P.
    • et al.

    OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.

    Biotechnol. Bioeng. 2003; 84: 647-657

    • Szczebara F.M.
    • et al.

    Total biosynthesis of hydrocortisone from a simple carbon source in yeast.

    Nat. Biotechnol. 2003; 21: 143-149

    • Margulies M.
    • et al.

    Genome sequencing in microfabricated high-density picolitre reactors.

    Nature. 2005; 437: 376-380

    • Gibson D.G.
    • et al.

    Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome.

    Science. 2008; 319: 1215-1220

    • Gibson D.G.
    • et al.

    Enzymatic assembly of DNA molecules up to several hundred kilobases.

    Nat. Methods. 2009; 6: 343-345

    • Zhang Y.
    • et al.

    Three-dimensional structural view of the central metabolic network of Thermotoga maritima.

    Science. 2009; 325: 1544-1549

    • Gibson D.G.
    • et al.

    Creation of a bacterial cell controlled by a chemically synthesized genome.

    Science. 2010; 329: 52-56

    • Medema M.H.
    • et al.

    antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    Nucleic Acids Res. 2011; 39: W339-W346

    • Karr J.R.
    • et al.

    A whole-cell computational model predicts phenotype from genotype.

    Cell. 2012; 150: 389-401

    • Bogorad I.W.
    • et al.

    Synthetic non-oxidative glycolysis enables complete carbon conservation.

    Nature. 2013; 502: 693-697

    • Siegel J.B.
    • et al.

    Computational protein design enables a novel one-carbon assimilation pathway.

    Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 3704-3709

    • Skinnider M.A.
    • et al.

    Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    Nucleic Acids Res. 2015; 43: 9645-9662

    • Khodayari A.
    • Maranas C.D.

    A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.

    Nat. Commun. 2016; 7: 13806

    • Nielsen A.A.
    • et al.

    Genetic circuit design automation.

    Science. 2016; 352aac7341

    • Bang J.
    • Lee S.Y.

    Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E9271-E9279

    • Senior A.W.
    • et al.

    Improved protein structure prediction using potentials from deep learning.

    Nature. 2020; 577: 706-710

    • Ryu J.Y.
    • et al.

    Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 13996-14001

    • Macklin D.N.
    • et al.

    Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation.

    Science. 2020; 369eaav3751

    • Jumper J.
    • et al.

    Highly accurate protein structure prediction with AlphaFold.

    Nature. 2021; 596: 583-589

    • Baek M.
    • et al.

    Accurate prediction of protein structures and interactions using a three-track neural network.

    Science. 2021; 373: 871-876

  • Time Stamp:

    More from Biotechnology Trends