On-demand electrical control of spin qubits

On-demand electrical control of spin qubits

Source Node: 1892255
  • Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron. 4, 872–884 (2021).

    Article  Google Scholar 

  • Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Article  Google Scholar 

  • Leon, R. C. C. et al. Coherent spin control of s-, p-, d– and f-electrons in a silicon quantum dot. Nat. Commun. 11, 797 (2020).

    Article  CAS  Google Scholar 

  • Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  • Nadj-Perge, S., Frolov, S. M., Bakkers, E. Pa. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  • Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Article  CAS  Google Scholar 

  • Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).

    Article  Google Scholar 

  • Scappucci, G. et al. The germanium quantum information route. Nat. Rev. Mater. 6, 926–943 (2021).

    Article  CAS  Google Scholar 

  • Froning, F. N. M. et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 16, 308–312 (2021).

    Article  CAS  Google Scholar 

  • Kim, D. et al. High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. npj Quantum Inf. 1, 15004 (2015).

    Article  Google Scholar 

  • Benito, M. et al. Electric-field control and noise protection of the flopping-mode spin qubit. Phys. Rev. B 100, 125430 (2019).

    Article  CAS  Google Scholar 

  • Croot, X. et al. Flopping-mode electric dipole spin resonance. Phys. Rev. Res. 2, 012006 (2020).

    Article  CAS  Google Scholar 

  • Bosco, S., Benito, M., Adelsberger, C. & Loss, D. Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power. Phys. Rev. B 104, 115425 (2021).

    Article  CAS  Google Scholar 

  • Kha, A., Joynt, R. & Culcer, D. Do micromagnets expose spin qubits to charge and Johnson noise? Appl. Phys. Lett. 107, 172101 (2015).

    Article  Google Scholar 

  • IEEE International Roadmap for Devices and Systems—IEEE IRDS; https://irds.ieee.org/

  • Leon, R. C. C. et al. Bell-state tomography in a silicon many-electron artificial molecule. Nat. Commun. 12, 3228 (2021).

    Article  CAS  Google Scholar 

  • Boter, J. M. et al. Spiderweb array: a sparse spin-qubit array. Phys. Rev. Applied 18, 024053 (2022).

    Article  CAS  Google Scholar 

  • Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Article  Google Scholar 

  • Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Article  Google Scholar 

  • Seedhouse, A. E. et al. Pauli blockade in silicon quantum dots with spin-orbit control. PRX Quantum 2, 010303 (2021).

    Article  Google Scholar 

  • Hao, X., Ruskov, R., Xiao, M., Tahan, C. & Jiang, H. Electron spin resonance and spin–valley physics in a silicon double quantum dot. Nat. Commun. 5, 3860 (2014).

    Article  CAS  Google Scholar 

  • Bourdet, L. & Niquet, Y.-M. All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing. Phys. Rev. B 97, 155433 (2018).

    Article  CAS  Google Scholar 

  • Corna, A. et al. Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot. npj Quantum Inf. 4, 6 (2018).

    Article  Google Scholar 

  • Huang, W., Veldhorst, M., Zimmerman, N. M., Dzurak, A. S. & Culcer, D. Electrically driven spin qubit based on valley mixing. Phys. Rev. B 95, 075403 (2017).

    Article  Google Scholar 

  • Huang, P. & Hu, X. Fast spin-valley-based quantum gates in Si with micromagnets. npj Quantum Inf. 7, 162 (2021).

    Article  Google Scholar 

  • Kyriakidis, J. & Burkard, G. Universal quantum computing with correlated spin-charge states. Phys. Rev. B 75, 115324 (2007).

    Article  Google Scholar 

  • Ercan, H. E., Coppersmith, S. N. & Friesen, M. Strong electron-electron interactions in Si/SiGe quantum dots. Phys. Rev. B 104, 235302 (2021).

    Article  CAS  Google Scholar 

  • Abadillo-Uriel, J. C., Martinez, B., Filippone, M. & Niquet, Y.-M. Two-body Wigner molecularization in asymmetric quantum dot spin qubits. Phys. Rev. B 104, 195305 (2021).

    Article  CAS  Google Scholar 

  • Dehollain, J. P. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2012).

    Article  Google Scholar 

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  Google Scholar 

  • Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).

    Article  Google Scholar 

  • Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).

    Article  CAS  Google Scholar 

  • Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).

    Article  CAS  Google Scholar 

  • Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).

    Article  CAS  Google Scholar 

  • Yao, W., Liu, R.-B. & Sham, L. J. Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005).

    Article  Google Scholar 

  • Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article  CAS  Google Scholar 

  • Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    Article  CAS  Google Scholar 

  • Crane, E., Schuckert, A., Le, N. H. & Fisher, A. J. Rydberg entangling gates in silicon. Phys. Rev. Res. 3, 033086 (2021).

    Article  CAS  Google Scholar 

  • Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article  Google Scholar 

  • Tosi, G. et al. Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8, 450 (2017).

    Article  Google Scholar 

  • Yang, C. H., Lim, W. H., Zwanenburg, F. A. & Dzurak, A. S. Dynamically controlled charge sensing of a few-electron silicon quantum dot. AIP Advances 1, 042111 (2011).

    Article  Google Scholar 

  • Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  • Yang, C. H. et al. Orbital and valley state spectra of a few-electron silicon quantum dot. Phys. Rev. B 86, 115319 (2012).

    Article  Google Scholar 

  • Becker, P., Pohl, H.-J., Riemann, H. & Abrosimov, N. Enrichment of silicon for a better kilogram. Phys. Status Solidi 207, 49–66 (2010).

    Article  CAS  Google Scholar 

  • Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology