Achieving nanoscale precision using neuromorphic localization microscopy

Achieving nanoscale precision using neuromorphic localization microscopy

Source Node: 1913975
  • Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

    Article  Google Scholar 

  • Shannon, C. E. Communication in the presence of noise. Proc. IRE 37, 10–21 (1949).

    Article  Google Scholar 

  • Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).

    Article  CAS  Google Scholar 

  • Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  • Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  CAS  Google Scholar 

  • Moerner, W. E. & Basché, T. Optical spectroscopy of single impurity molecules in solids. Angew. Chem. Int. Ed. 32, 457–476 (1993).

    Article  Google Scholar 

  • Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).

    Article  CAS  Google Scholar 

  • Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  CAS  Google Scholar 

  • Lacoste, T. D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl Acad. Sci. USA 97, 9461–9466 (2000).

    Article  CAS  Google Scholar 

  • Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  • Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    Article  CAS  Google Scholar 

  • Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2020.3008413 (2020).

  • Posch, C. Bio-inspired vision. J. Instrum. 7, C01054–C01054 (2012).

    Article  Google Scholar 

  • Miao, S. et al. Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection. Front. Neurorobot. 13, 38 (2019).

    Article  Google Scholar 

  • Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008).

    Article  Google Scholar 

  • Son, B. et al. 4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-event representation. In Proc. 2017 IEEE International Solid-State Circuits Conference (ISSCC) 66–67 (IEEE, 2017).

  • Liu, S. C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010).

    Article  Google Scholar 

  • Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Article  Google Scholar 

  • Mangalore, A. R., Seelamantula, C. S. & Thakur, C. S. Neuromorphic fringe projection profilometry. IEEE Signal Process. Lett. 27, 1510–1514 (2020).

    Article  Google Scholar 

  • Liao, F., Zhou, F. & Chai, Y. Neuromorphic vision sensors: principle, progress and perspectives. J. Semicond. 42, 013105 (2021).

    Article  Google Scholar 

  • Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

    Article  Google Scholar 

  • Hamilton, T. J., Afshar, S., Schaik, A. V. & Tapson, J. Stochastic electronics: a neuro-inspired design paradigm for integrated circuits. Proc. IEEE 102, 843–859 (2014).

    Article  Google Scholar 

  • Lakshmi, A., Chakraborty, A. & Thakur, C. S. Neuromorphic vision: from sensors to event-based algorithms. WIREs Data Min. Knowl. Discov. 9, e1310 (2019).

    Google Scholar 

  • Kedia, S. et al. Real-time nanoscale organization of amyloid precursor protein. Nanoscale 12, 8200–8215 (2020).

    Article  CAS  Google Scholar 

  • Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    Article  CAS  Google Scholar 

  • Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T. & Scaramuzza, D. The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 36, 142–149 (2017).

    Article  Google Scholar 

  • Annamalai, L., Chakraborty, A. & Thakur, C. S. EvAn: neuromorphic event-based sparse anomaly detection. Front. Neurosci. 15, 699003 (2021).

    Article  Google Scholar 

  • Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J.-B. Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One 8, e62918 (2013).

    Article  CAS  Google Scholar 

  • Izeddin, I. et al. Wavelet analysis for single molecule localization microscopy. Opt. Express 20, 2081–2095 (2012).

    Article  CAS  Google Scholar 

  • Helgadottir, S., Argun, A. & Volpe, G. Digital video microscopy enhanced by deep learning. Optica 6, 506–513 (2019).

    Article  Google Scholar 

  • Hedde, P. N. miniSPIM—a miniaturized light-sheet microscope. ACS Sens. 6, 2654–2663 (2021).

    Article  CAS  Google Scholar 

  • Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    Article  CAS  Google Scholar 

  • Napolitano, M. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011).

    Article  CAS  Google Scholar 

  • Racine, V. et al. Multiple-target tracking of 3D fluorescent objects based on simulated annealing. In Proc. 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1020–1023 (IEEE, 2006).

  • Smith, S. L., Kindermans, P.-J. & Le, Q. V. Don’t decay the learning rate, increase the batch size. In Proc. 6th International Conference on Learning Representations (OpenReview, 2018); https://openreview.net/forum?id=B1Yy1BxCZ

  • Time Stamp:

    More from Nature Nanotechnology