A magnetically powered nanomachine with a DNA clutch - Nature Nanotechnology

A magnetically powered nanomachine with a DNA clutch – Nature Nanotechnology

Source Node: 2475971
  • Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  • Kim, Y. & Nam, J.-M. Mechanically interlocked gold nanocatenanes. Nat. Synth. 1, 649–657 (2022).

    Article  Google Scholar 

  • Hart, L. F. et al. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 6, 508–530 (2021).

    Article  CAS  Google Scholar 

  • Wu, Z. et al. Superfast near-infrared light-driven polymer multilayer rockets. Small 12, 577–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. et al. Light-driven microdrones. Nat. Nanotechnol. 17, 477–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  • McNeill, J. M., Nama, N., Braxton, J. M. & Mallouk, T. E. Wafer-scale fabrication of micro- to nanoscale bubble swimmers and their fast autonomous propulsion by ultrasound. ACS Nano 14, 7520–7528 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schamel, D. et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8, 8794–8801 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Maier, A. M. et al. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton, M. M. et al. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano 11, 9968–9978 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Roberts, Anthony, J., Leschziner, Andres, E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-u et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-H. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.-w et al. Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nat. Protoc. 12, 1871–1889 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, T., Lungerich, D., Harano, K. & Nakamura, E. Time-resolved imaging of stochastic cascade reactions over a submillisecond to second time range at the angstrom level. J. Am. Chem. Soc. 144, 9797–9805 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mortensen, K. I., Flyvbjerg, H. & Pedersen, J. N. Confined Brownian motion tracked with motion blur: estimating diffusion coefficient and size of confining space. Front. Phys. 8, 583202 (2021).

    Article  Google Scholar 

  • Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen Mark, G. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 1493–1496 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. K., Kim, S., Oh, J. W. & Nam, J. M. Massively parallel and highly quantitative single-particle analysis on interactions between nanoparticles on supported lipid bilayer. J. Am. Chem. Soc. 136, 4081–4088 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. et al. Optokinetically encoded nanoprobe-based multiplexing strategy for microRNA profiling. J. Am. Chem. Soc. 139, 3558–3566 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Stabley, D. R., Jurchenko, C., Marshall, S. S. & Salaita, K. S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64–67 (2011).

    Article  PubMed  Google Scholar 

  • Kwak, M. et al. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat. Cell Biol. 24, 1739–1753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Ge, C., Zhu, C. & Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology