Ultrahigh-printing-speed photoresists for additive manufacturing - Nature Nanotechnology

Ultrahigh-printing-speed photoresists for additive manufacturing – Nature Nanotechnology

Source Node: 2305389
  • Erkal, J. L. et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).

    Article  CAS  Google Scholar 

  • Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27, 6644–6650 (2015).

    Article  CAS  Google Scholar 

  • von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).

    Article  Google Scholar 

  • Xiong, W. et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication. Adv. Mater. 28, 2002–2009 (2016).

    Article  CAS  Google Scholar 

  • Zhang, W. et al. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).

    Article  CAS  Google Scholar 

  • Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).

    Article  Google Scholar 

  • Symes, M. D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012).

    Article  CAS  Google Scholar 

  • Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    Article  CAS  Google Scholar 

  • Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  Google Scholar 

  • Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  CAS  Google Scholar 

  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  CAS  Google Scholar 

  • Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    Article  CAS  Google Scholar 

  • Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  • Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a review. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    Article  CAS  Google Scholar 

  • Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: toward high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).

    Article  CAS  Google Scholar 

  • Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    Article  Google Scholar 

  • Jin, F. et al. λ/30 inorganic features achieved by multi-photon 3D lithography. Nat. Commun. 13, 1357 (2022).

    Article  CAS  Google Scholar 

  • Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article  CAS  Google Scholar 

  • Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article  Google Scholar 

  • Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).

    Article  Google Scholar 

  • Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21, 26244–26260 (2013).

    Article  Google Scholar 

  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  CAS  Google Scholar 

  • Malinauskas, M., Zukauskas, A., Bickauskaite, G., Gadonas, R. & Juodkazis, S. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Express 18, 10209–10221 (2010).

    Article  CAS  Google Scholar 

  • Shaw, L. A. et al. Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express 26, 13543–13548 (2018).

    Article  CAS  Google Scholar 

  • Ito, H. Chemical amplification resists for microlithography. Adv. Polym. Sci. 172, 37–245 (2005).

    Article  CAS  Google Scholar 

  • Ito, H. Chemical amplification resists: inception, implementation in device manufacture, and new developments. J. Polym. Sci. A 41, 3863–3870 (2003).

    Article  CAS  Google Scholar 

  • Ito, H. Chemical amplification resists: History and development within IBM. IBM J. Res. Dev. 41, 69–80 (1997).

    Article  CAS  Google Scholar 

  • Bourzac, K. A giant bid to etch tiny circuits. Nature 487, 419 (2012).

    Article  CAS  Google Scholar 

  • Lithography roadmap on track. Nat. Photon. 4, 20 (2010).

  • Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).

    Article  CAS  Google Scholar 

  • Trikeriotis, M. et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).

    Article  CAS  Google Scholar 

  • Jiang, J., Chakrabarty, S., Yu, M. & Ober, C. K. Metal oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).

    Article  Google Scholar 

  • Xu, H. et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 30, 4124–4133 (2018).

    Article  CAS  Google Scholar 

  • Tanaka, H., Matsumoto, A., Akinaga, K., Takahashi, A. & Okada, T. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005).

    Article  Google Scholar 

  • Service, R. F. Optical lithography goes to extremes-and beyond. Science 293, 785–786 (2001).

    Article  CAS  Google Scholar 

  • The shrinking chip. Nat. Photonics 3, 485 (2009).

  • Xu, H., Kosma, V., Giannelis, E. P. & Ober, C. K. In pursuit of Moore’s Law: polymer chemistry in action. Polym. J. 50, 45–55 (2018).

    Article  Google Scholar 

  • Rayleigh, L. On the theory of optical images, with special reference to the microscope. J. R. Microsc. Soc. 42, 167–195 (2011).

    Google Scholar 

  • Wagner, C. & Harned, N. Lithography gets extreme. Nat. Photon. 4, 24–26 (2010).

    Article  CAS  Google Scholar 

  • Sanders, D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).

    Article  CAS  Google Scholar 

  • Pohlers, G., Scaiano, J. C., Step, E. & Sinta, R. Ionic vs free radical pathways in the direct and sensitized photochemistry of 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine: relevance for photoacid generation. J. Am. Chem. Soc. 121, 6167–6175 (1999).

    Article  CAS  Google Scholar 

  • Pohlers, G., Scaiano, J. C., Sinta, R., Brainard, R. & Pai, D. Mechanistic studies of photoacid generation from substituted 4,6-bis(trichloromethyl)-1,3,5-triazines. Chem. Mater. 9, 1353–1361 (1997).

    Article  CAS  Google Scholar 

  • Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).

    Article  CAS  Google Scholar 

  • Lu, W. E., Dong, X. Z., Chen, W. Q., Zhao, Z. S. & Duan, X. M. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011).

    Article  CAS  Google Scholar 

  • Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article  CAS  Google Scholar 

  • Sheik-Bahae, M., Said, A. A. & Van Stryland, E. W. High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989).

    Article  CAS  Google Scholar 

  • Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).

    Article  CAS  Google Scholar 

  • Berland, K. et al. Van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).

    Article  Google Scholar 

  • Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    Article  CAS  Google Scholar 

  • Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article  CAS  Google Scholar 

  • Sheng, L. et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).

    Article  CAS  Google Scholar 

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Article  Google Scholar 

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  • Andzelm, J., Kolmel, C. & Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).

    Article  CAS  Google Scholar 

  • Klamt, A., Jonas, V., Burger, T. & Lohrenz, J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998).

    Article  CAS  Google Scholar 

  • Mullins, E. et al. Sigma-profile database for using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 45, 4389–4415 (2006).

    Article  CAS  Google Scholar 

  • Mullins, E., Liu, Y. A., Ghaderi, A. & Fast, S. D. Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 47, 1707–1725 (2008).

    Article  CAS  Google Scholar 

  • Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  • Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  • Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  • Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).

    Article  CAS  Google Scholar 

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  • Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  • Frisch, M. J. et al. Gaussian 16 Revision C (Gaussian, 2016).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology