Atomically thin optomemristive feedback neurons

Atomically thin optomemristive feedback neurons

Source Node: 2086202
  • Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Article  CAS  Google Scholar 

  • M, D., N, S., T, L. & G, C. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article  Google Scholar 

  • Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    Article  CAS  Google Scholar 

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article  CAS  Google Scholar 

  • Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020).

    Article  CAS  Google Scholar 

  • Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article  Google Scholar 

  • Hassan, N. et al. Magnetic domain wall neuron with lateral inhibition. J. Appl. Phys. 124, 152127 (2018).

    Article  Google Scholar 

  • Kandel, E. R. et al. Principles of Neural Science Vol. 4 (McGraw-Hill, 2000).

  • Yin, H. in Computational Intelligence: a Compendium (eds Fulcher, J. & Jain, L. C.) 715–762 (Springer, 2008).

  • Maass, W. On the computational power of winner-take-all. Neural Comput. 12, 2519–2535 (2000).

    Article  CAS  Google Scholar 

  • Maass, W. Neural computation with winner-take-all as the only nonlinear operation. Adv. Neural Inf. Process. Syst. 12, 293–299 (2000).

    Google Scholar 

  • Lazzaro, J., Ryckebusch, S., Mahowald, M. A. & Mead, C. A. Winner-take-all networks of O(n) complexity. Adv. Neural Inf. Process. Syst. 1, 703–711 (1988).

  • Kaski, S. & Kohonen, T. Winner-take-all networks for physiological models of competitive learning. Neural Netw. 7, 973–984 (1994).

    Article  Google Scholar 

  • Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor learning rules. Front. Neural Circuits 12, 53 (2018).

    Article  Google Scholar 

  • Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 21, 80–92 (2020).

    Article  CAS  Google Scholar 

  • Kreiser, R., Moraitis, T., Sandamirskaya, Y. & Indiveri, G. On-chip unsupervised learning in winner-take-all networks of spiking neurons. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2017).

  • Hsu, D., Figueroa, M. & Diorio, C. Competitive learning with floating-gate circuits. IEEE Trans. Neural Netw. 13, 732–744 (2002).

    Article  CAS  Google Scholar 

  • Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).

    Article  Google Scholar 

  • Ebong, I. E. & Mazumder, P. CMOS and memristor-based neural network design for position detection. Proc. IEEE 100, 2050–2060 (2011).

    Article  Google Scholar 

  • Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F. J. & Schmidhuber, J. Compete to compute. In Advances in Neural Information Processing Systems 26 (NIPS 2013), 2310–2318 (Citeseer, 2013).

  • Oster, M., Douglas, R. & Liu, S.-C. Computation with spikes in a winner-take-all network. Neural Comput. 21, 2437–2465 (2009).

    Article  Google Scholar 

  • Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Ann. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  • Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  • Sarwat, S. G., Moraitis, T., Wright, C. D. & Bhaskaran, H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 13, 2247 (2022).

    Article  CAS  Google Scholar 

  • Wang, Q. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 4, eaap7916 (2018).

    Article  Google Scholar 

  • Xiang, D. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Natu. Commun. 9, 2966 (2018).

    Article  Google Scholar 

  • Tran, M. D. et al. Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 31, 1807075 (2019).

    Article  Google Scholar 

  • Lee, J. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017).

    Article  CAS  Google Scholar 

  • Sze, S. M., Li, Y. & Ng, K. K. Physics of Semiconductor Devices (John Wiley & Sons, 2021).

  • Amit, I. et al. Role of charge traps in the performance of atomically thin transistors. Adv. Mater. 29, 1605598 (2017).

    Article  Google Scholar 

  • Kim, S. Y., Yang, H. I. & Choi, W. Photoluminescence quenching in monolayer transition metal dichalcogenides by Al2O3 encapsulation. Appl. Phys. Lett. 113, 133104 (2018).

    Article  Google Scholar 

  • Li, Z., Wang, W., Greenham, N. C. & McNeill, C. R. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Phys. Chem. Chem. Phys. 16, 25684–25693 (2014).

    Article  CAS  Google Scholar 

  • Carpenter, G. A. & Grossberg, S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37, 54–115 (1987).

    Article  Google Scholar 

  • Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013).

    Article  Google Scholar 

  • Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).

    Article  Google Scholar 

  • Oh, S. et al. Energy-efficient Mott activation neuron for full-hardware implementation of neural networks. Nat. Nanotechnol. 16, 680–687 (2021).

    Article  CAS  Google Scholar 

  • Meng, W. et al. Three-dimensional monolithic micro-led display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article  CAS  Google Scholar 

  • Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-led display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology