Evidence of frustrated magnetic interactions in a Wigner–Mott insulator

Evidence of frustrated magnetic interactions in a Wigner–Mott insulator

Source Node: 1901775
  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  CAS  Google Scholar 

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  CAS  Google Scholar 

  • Nicolás, M. D. et al. Non-local interactions in moiré Hubbard systems. Phys. Rev. Lett. 128, 217202 (2022).

    Article  Google Scholar 

  • Hu, N. C. & MacDonald, A. H. Competing magnetic states in transition metal dichalcogenide moiré materials. Phys. Rev. B 104, 214403 (2021).

    Article  CAS  Google Scholar 

  • Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  CAS  Google Scholar 

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  • Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    Article  CAS  Google Scholar 

  • Slagle, K. & Fu, L. Charge transfer excitations, pair density waves, and superconductivity in moiré materials. Phys. Rev. B 102, 235423 (2020).

    Article  CAS  Google Scholar 

  • Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii–Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    Article  CAS  Google Scholar 

  • Pan, H., Wu, F. & Das Sarma, S. Quantum phase diagram of a moiré–Hubbard model. Phys. Rev. B 102, 201104 (2020).

    Article  CAS  Google Scholar 

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article  CAS  Google Scholar 

  • Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).

    Article  CAS  Google Scholar 

  • Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article  CAS  Google Scholar 

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021).

    Article  CAS  Google Scholar 

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  CAS  Google Scholar 

  • Margarita D., Yang Z. & Fu, L. Itinerant spin polaron and metallic ferromagnetism in semiconductor moiré superlattices. Preprint at https://arxiv.org/abs/2206.01221 (2022).

  • Lee, K., Sharma, P., Vafek O. & Changlani, H.J. Triangular lattice Hubbard model physics at intermediate temperatures. Preprint at https://arxiv.org/abs/2209.00664 (2022).

  • Morales-Durán, N., Potasz, P. & MacDonald, A.H. Magnetism and quantum melting in moiré-material Wigner crystals. Preprint at https://arxiv.org/abs/2210.15168 (2022).

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  • Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  Google Scholar 

  • Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  CAS  Google Scholar 

  • Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    Article  CAS  Google Scholar 

  • Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  • Spal/ek, J. et al. Magnetic susceptibility of semimagnetic semiconductors: the high-temperature regime and the role of superexchange. Phys. Rev. B 33, 3407–3418 (1986).

    Article  CAS  Google Scholar 

  • Zheng, W., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Temperature dependence of the magnetic susceptibility for triangular-lattice antiferromagnets with spatially anisotropic exchange constants. Phys. Rev. B 71, 134422 (2005).

    Article  Google Scholar 

  • Tang, Y. et al. Dielectric catastrophe at the Wigner–Mott transition in a moiré superlattice. Nat. Commun. 13, 4271 (2022).

    Article  CAS  Google Scholar 

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  CAS  Google Scholar 

  • Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article  CAS  Google Scholar 

  • Foo, M. L. et al. Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. Phys. Rev. Lett. 92, 247001 (2004).

    Article  Google Scholar 

  • Merino, J., Powell, B. J. & McKenzie, R. H. Ferromagnetism, paramagnetism, and a Curie–Weiss metal in an electron-doped Hubbard model on a triangular lattice. Phys. Rev. B 73, 235107 (2006).

    Article  Google Scholar 

  • Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology