Full-length single-molecule protein fingerprinting - Nature Nanotechnology

Full-length single-molecule protein fingerprinting – Nature Nanotechnology

Source Node: 2481342
  • Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. K., Pham, M. H. C., Ko, K. S., Rhee, B. D. & Han, J. Alternative splicing isoforms in health and disease. Pflügers Arch. 470, 995–1016 (2018).

  • Paronetto, M. P., Passacantilli, I. & Sette, C. Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ. 23, 1919–1929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H. & Caroll, K. S. Introduction: posttranslational protein modification. Chem. Rev. 118, 887–888 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Carbonara, K., Andonovski, M. & Coorssen, J. R. Proteomes are of proteoforms: embracing the complexity. Proteomes 9, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, M. D., Ngo, D., Ganz, P. & Gerszten, R. E. Emerging affinity reagents for high throughput proteomics: trust, but verify. Circulation 140, 1610–1612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. et al. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat. Commun. 7, 13397 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Čaval, T., Tian, W., Yang, Z., Clausen, H. & Heck, A. J. R. Direct quality control of glycoengineered erythropoietin variants. Nat. Commun. 9, 3342 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Siuti, N. & Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 410, 817–821 (2007).

    Article  Google Scholar 

  • Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46, 2159–2168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    Article  ADS  PubMed  Google Scholar 

  • Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd, B. M. & Marcotte, E. M. Protein sequencing, one molecule at a time. Annu. Rev. Biophys. 51, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timp, W. & Timp, G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 6, eaax8978 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan, J., Boulgakov, A. A. & Marcotte, E. M. A theoretical justification for single molecule peptide sequencing. PLoS Comput. Biol. 11, e1004080 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rodriques, S. G., Marblestone, A. H. & Boyden, E. S. A theoretical analysis of single molecule protein sequencing via weak binding spectra. PLoS ONE 14, e0212868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Y., Docter, M., Van Ginkel, J., De Ridder, D. & Joo, C. Single-molecule protein sequencing through fingerprinting: computational assessment. Phys. Biol. 12, 10–16 (2015).

    Article  Google Scholar 

  • de Lannoy, C. V. et al. Evaluation of FRET X for single-molecule protein fingerprinting. iScience 24, 103239 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

  • van Ginkel, J. et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. USA 115, 3338–3343 (2018).

  • Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).

    Article  CAS  Google Scholar 

  • Shrestha, P. et al. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. Nat. Nanotechnol. 16, 1362–1370 (2021).

  • Filius, M., Kim, S. H., Severins, I. & Joo, C. High-resolution single-molecule FRET via DNA exchange (FRET X). Nano Lett. 21, 3295–3301 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Filius, M., van Wee, R. & Joo, C. in Single Molecule Analysis: Methods and Protocols (eds Heller, I. et al.) 203–213 (Springer, 2024).

  • Van Wee, R., Filius, M. & Joo, C. Completing the canvas: advances and challenges for DNA-PAINT super-resolution imaging. Trends Biochem. Sci. 11, 918–930 (2021).

    Google Scholar 

  • Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Shi, X. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat. Methods 9, 499–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellosillo, P. & Minguez, P. A global map of associations between types of protein posttranslational modifications and human genetic diseases. iScience 24, 102917 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri, T. et al. O-GlcNAcylation prediction: an unattained objective. Adv. Appl. Bioinform. Chem. 14, 87–102 (2021).

  • Shi, J., Ruijtenbeek, R. & Pieters, R. J. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 28, 814–824 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Shen, D. L. et al. Catalytic promiscuity of O-GlcNAc transferase enables unexpected metabolic engineering of cytoplasmic proteins with 2-azido-2-deoxy-glucose. ACS Chem. Biol. 12, 206–213 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A., Gloster, T. M., Chou, W. K., Vocadlo, D. J. & Tanner, M. E. 6′-Azido-6′-deoxy-UDP-N-acetylglucosamine as a glycosyltransferase substrate. Bioorg. Med. Chem. Lett. 21, 1199–1201 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, J. I., Munch, H. K., Moore, T. & Francis, M. B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat. Chem. Biol. 11, 326–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. et al. S100A8/A9 in inflammation. Front. Immunol. 9, 1298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayan, A. L. et al. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J. Intensive Care 5, 51 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ree, R., Varland, S. & Arnesen, T. Spotlight on protein N-terminal acetylation. Exp. Mol. Med. 50, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, D. H. et al. Engineering a proximity-directed O-GlcNAc transferase for selective protein O-GlcNAcylation in cells. ACS Chem. Biol. 15, 1059–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y.-Y., Ascano, J. M. & Hang, H. C. Bioorthogonal chemical reporters for monitoring protein acetylation. J. Am. Chem. Soc. 132, 3640–3641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westcott, N. P., Fernandez, J. P., Molina, H. & Hang, H. C. Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress. Nat. Chem. Biol. 13, 302–308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabuka, D., Hubbard, S. C., Laughlin, S. T., Argade, S. P. & Bertozzi, C. R. A chemical reporter strategy to probe glycoprotein fucosylation. J. Am. Chem. Soc. 128, 12078–12079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeggeman, E. et al. Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Bioconjugate Chem. 18, 806–814 (2007).

    Article  CAS  Google Scholar 

  • van Geel, R. et al. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjugate Chem. 26, 2233–2242 (2015).

    Article  Google Scholar 

  • Tate, E. W., Kalesh, K. A., Lanyon-Hogg, T., Storck, E. M. & Thinon, E. Global profiling of protein lipidation using chemical proteomic technologies. Curr. Opin. Chem. Biol. 24, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  • Han, X., Aslanian, A. & Yates, J. R. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filius, M. et al. High-speed super-resolution imaging using protein-assisted DNA-PAINT. Nano Lett. 20, 2264–2270 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. H., Kim, H., Jeong, H. & Yoon, T. Y. Encoding multiple virtual signals in DNA barcodes with single-molecule FRET. Nano Lett. 21, 1694–1701 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • McCann, J. J., Choi, U. B., Zheng, L., Weninger, K. & Bowen, M. E. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys. J. 99, 961–970 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge University Press, 2000).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

  • Pabst, M. et al. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME J. 16, 346–357 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Chuh, K. N., Zaro, B. W., Piller, F., Piller, V. & Pratt, M. R. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J. Am. Chem. Soc. 136, 12283–12295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology