Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma

Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma

Source Node: 1921295
  • Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    Article  CAS  Google Scholar 

  • Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  Google Scholar 

  • Shi, J., Xiao, Z., Kamaly, N. & Farokhzad, O. C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44, 1123–1134 (2011).

    Article  CAS  Google Scholar 

  • Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleider, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1, 0063 (2017).

    Article  CAS  Google Scholar 

  • Ma, L., Kohli, M. & Smith, A. Nanoparticles for combination drug therapy. ACS Nano 7, 9518–9525 (2013).

    Article  CAS  Google Scholar 

  • Mignani, S., Bryszewska, M., Klajnert-Maculewicz, B., Zablocka, M. & Majoral, J.-P. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 16, 1–27 (2015).

    Article  CAS  Google Scholar 

  • Zhang, R. X., Wong, H. L., Xue, H. Y., Eoh, J. Y. & Wu, X. Y. Nanomedicine of synergistic drug combinations for cancer therapy—strategies and perspectives. J. Control. Release 240, 489–503 (2016).

    Article  CAS  Google Scholar 

  • Hu, Q., Sun, W., Wang, C. & Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 98, 19–34 (2016).

    Article  CAS  Google Scholar 

  • Shim, G., Kim, M.-G., Kim, D., Park, J. Y. & Oh, Y.-K. Nanoformulation-based sequential combination cancer therapy. Adv. Drug Deliv. Rev. 115, 57–81 (2017).

    Article  CAS  Google Scholar 

  • Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128 (2009).

    Article  CAS  Google Scholar 

  • Tardi, P. et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk. Res. 33, 129–139 (2009).

    Article  CAS  Google Scholar 

  • Batist, G. et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin. Cancer Res. 15, 692–700 (2009).

    Article  CAS  Google Scholar 

  • Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    Article  CAS  Google Scholar 

  • Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl Acad. Sci. USA 107, 17939–17944 (2010).

    Article  CAS  Google Scholar 

  • Deng, Z. J. et al. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7, 9571–9584 (2013).

    Article  CAS  Google Scholar 

  • Aryal, S., Hu, C.-M. J. & Zhang, L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharmaceutics 8, 1401–1407 (2011).

    Article  CAS  Google Scholar 

  • Lammers, T. et al. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30, 3466–3475 (2009).

    Article  CAS  Google Scholar 

  • Wang, H. et al. Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: extended and sequentially controllable drug release. ACS Appl. Mater. Interfaces 9, 10567–10576 (2017).

    Article  CAS  Google Scholar 

  • Zhang, L. et al. Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. J. Control. Release 294, 1–16 (2019).

    Article  CAS  Google Scholar 

  • Cai, L. et al. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37, 456–468 (2015).

    Article  CAS  Google Scholar 

  • Howlader, N. et al. SEER Cancer Statistics Review, 1975–2013, National Cancer Institute, Bethesda, MD, based on November 2015 SEER data submission, posted to the SEER website (2016); https://seer.cancer.gov/archive/csr/1975_2013/

  • Attal, M. et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N. Engl. J. Med. 376, 1311–1320 (2017).

    Article  CAS  Google Scholar 

  • Nooka, A. K. et al. Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia 28, 690–693 (2014).

    Article  CAS  Google Scholar 

  • Richardson, P. G. et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 20, 781–794 (2019).

  • Chanan-Khan, A. A. et al. Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J. 3, e143 (2013).

    Article  CAS  Google Scholar 

  • Dimopoulos, M. et al. Pomalidomide, bortezomib, and dexamethasone for multiple myeloma previously treated with lenalidomide (OPTIMISMM): outcomes by prior treatment at first relapse. Leukemia 35, 1722–1731 (2021).

    Article  CAS  Google Scholar 

  • Swami, A. et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc. Natl Acad. Sci. USA 111, 10287–10292 (2014).

    Article  CAS  Google Scholar 

  • Ashley, J. D. et al. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J. Med. Chem. 57, 5282–5292 (2014).

    Article  CAS  Google Scholar 

  • Xu, W. et al. Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chem. Commun. 51, 6812–6815 (2015).

    Article  CAS  Google Scholar 

  • Lu, X. et al. Bortezomib dendrimer prodrug‐based nanoparticle system. Adv. Funct. Mater. 29, 1807941 (2019).

    Article  Google Scholar 

  • Zhu, J. et al. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 10, 18387–18397 (2018).

    Article  CAS  Google Scholar 

  • Detappe, A., Bustoros, M., Mouhieddine, T. H. & Ghoroghchian, P. P. Advancements in nanomedicine for multiple myeloma. Trends Mol. Med. 24, 560–574 (2018).

    Article  CAS  Google Scholar 

  • Mu, C.-F. et al. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials 155, 191–202 (2018).

    Article  CAS  Google Scholar 

  • Zhong, W., Zhang, X., Zhao, M., Wu, J. & Lin, D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater. Sci. 8, 4692–4711 (2020).

    Article  CAS  Google Scholar 

  • Ashley, J. D. et al. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol. Cancer Ther. 15, 1452–1459 (2016).

    Article  CAS  Google Scholar 

  • Soodgupta, D. et al. Small molecule MYC inhibitor conjugated to integrin-targeted nanoparticles extends survival in a mouse model of disseminated multiple myeloma. Mol. Cancer Ther. 14, 1286–1294 (2015).

    Article  CAS  Google Scholar 

  • Deshantri, A. K. et al. Complete tumor regression by liposomal bortezomib in a humanized mouse model of multiple myeloma. Hemasphere 4, e463 (2020).

    Article  Google Scholar 

  • Deshantri, A. K. et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J. Control. Release 296, 232–240 (2019).

    Article  CAS  Google Scholar 

  • Nguyen, H. V.-T. et al. Scalable synthesis of multivalent macromonomers for ROMP. ACS Macro Lett. 7, 472–476 (2018).

    Article  CAS  Google Scholar 

  • Liu, J. et al. ‘Brush-first’ method for the parallel synthesis of photocleavable, nitroxide-labeled PEG star polymers. J. Am. Chem. Soc. 134, 16337–16344 (2012).

    Article  CAS  Google Scholar 

  • Sowers, M. A. et al. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat. Commun. 5, 5460 (2014).

    Article  Google Scholar 

  • Stubelius, A., Lee, S. & Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res. 52, 3108–3119 (2019).

    Article  CAS  Google Scholar 

  • Antonio, J. P. M., Russo, R., Carvalho, C. P., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem. Soc. Rev. 48, 3513–3536 (2019).

    Article  CAS  Google Scholar 

  • Brooks, W. L. A. & Sumerlin, B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116, 1375–1397 (2016).

    Article  CAS  Google Scholar 

  • Graham, B. J., Windsor, I. W., Gold, B. & Raines, R. T. Boronic acid with high oxidative stability and utility in biological contexts. Proc. Natl Acad. Sci. USA 118, e2013691118 (2021).

    Article  CAS  Google Scholar 

  • Millennium Pharmaceuticals, Inc. Approval Package for Application Number 21-602/S-015 (Velcade). Center for Drug Evaluation and Research (2008).

  • Merz, M. et al. Subcutaneous versus intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG-MM5 trial. Haematologica 100, 964–969 (2015).

    Article  CAS  Google Scholar 

  • Fink, E. C. et al. CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132, 1535–1544 (2018).

    Article  CAS  Google Scholar 

  • Hemeryck, A. et al. Tissue distribution and depletion kinetics of bortezomib and bortezomib-related radioactivity in male rats after single and repeated intravenous injection of 14C-bortezomib. Cancer Chemother. Pharmacol. 60, 777–787 (2007).

    Article  CAS  Google Scholar 

  • Sanchorawala, V. et al. A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood 130, 597–605 (2017).

    Article  CAS  Google Scholar 

  • Summers, H. D. et al. Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011).

    Article  CAS  Google Scholar 

  • Rees, P., Wills, J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 10, 2341 (2019).

    Article  Google Scholar 

  • Lancet, J. E. et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 36, 2684–2692 (2018).

    Article  CAS  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology